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ABSTRACT 

We continue the investigations in the author's book on cardinal arithmetic, 

assuming some knowledge of it. We deal with the cofinality of (S_<tt0 (ir C_) 

for ~ real valued measurable (Section 3), densities of box products (Section 

5,3), prove the equality cov(A, A, 8 +, 2) -- pp(A) in more cases even when 

cf(A) ---- R0 (Section 1), deal with bounds of pp(A) for A limit of inaccessible 

(Section 4) and give proofs to wrious claims I was sure I had already 

written but did not find (Section 6). 
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A n n o t a t e d  C o n t e n t s  

Equivalence of two covering properties . . . . . . . . . . . . . . . . .  

[We try to characterize when, say, A has few countable subsets; for a given 

E (R0, A), we try to translate to expressions with pcf's the cardinal 
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Min {]7)I: 7) C_ S<,(A) and every a E S<a(A) is U a , ,  such that every 
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[We show that if # > A > ~, ~ = cov(#,A+,A+,~) and cov(A,~,s, 2) _< # (or 

< 8), then coy(#, A +, A +, 2) = coy(0, ~, ~, 2). This is used in [Sh-f, Appendix,w 

to clarify the conditions for the holding of versions of the weak diamond.] 

3. Cofinality of S_<~ o (~) for ~ real valued measurable and trees ....... 72 

[Dealing with partition theorems on trees, Rubin-Shelah [RuSh117] arrive at the 

statement: A > ~ > Ro are regular, a~ E S<~(#), # < A; can we find unbounded 

W C_ A such that  l U ~ e w a ~ l  < ~? Of course, A,~<~ cov(a ,g ,~ ,2 )  < A suffice, 

but is it necessary? By 3.1, yes. Then we answer a problem of Fremlin: e.g. if 

is a real valued measurable cardinal then the cofinality of (S<~ 0 (~), C_) is ~. 

Lastly we return to the problem of the existence of trees with many branches 

(3.3, 3.4).] 

4. Bounds for PPr(~)  for limits of inaccessibles . . . . . . . . . . . . . .  79 

[Unfortunately, our results need an assumption: pcf(a) does not have an in- 

accessible accumulation point (laI < Mina,  a C_ Reg, of course). Our main 

conclusion (4.3) is that  e.g. if (Ar ~ < w4) is the list of the first R4 inaccessibles 

then PPr(~I) ( U r  Ar < Ur Ar This does not follow from the proof of 

pp lq~ < lq~ 4 [Sh400,w nor do we make our life easier by assuming " U r  Ar is 

strong limit". We indeed in the end quote a variant of [Sh400,w (= [Sh410,3.5]). 

But the main point now is to arrive at the starting point there: show that  for 

6 < w4, cf6 = R2, for some club C of 6, suppcfs2.complete({A(: ~ E C}) is 

< A6. This is provided by 4.2.] 

5. Densities of box products* . . . . . . . . . . . . . . . . . . . . . .  85 

[The behavior of the Tichonov product of topological spaces on densities is quite 

well understood for ~'2 : it is Min{A: 2 A > #}; but less so for the generalization to 

box products. Let T~,s,~ be the space with set of points "8, and basis ([f]: f a 

part ial  function from # to O of cardinality < ~}, where If] = (g E~'O: f C_ g}. 

If 8 < A = A <~, 2 A > # the situation is similar to the Tichonov product.  Now 

the characteristic unclear case is/~ strong limit singular of cofinality < s,  O = 2, 

2 ~' > #+. We prove that  the density is "usually" large (2~), i.e. the failure quite 

limits the cardinal arithmetic involved (we can prove directly consistency results 

but  what we do seems more informative).] 

6. Odds and ends . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

Notation: Let Jx[a] be {b C_ a: A ~ pcf(b)}, equivalently J<~[a] + b~[a]. 

See more in [Sh513], [Sh589]. 

* There is a paper in preparation on independence results by Gitik and Shelah. 
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1. Equ iva l ence  of  T w o  Cover ing  P r o p e r t i e s  

63 

1.1 CLAIM: / fppA = A +, A > cf(A) = ~ > b~0 then cov(A,A, ~+, 2) = A +. 

Proofi Let X = ~3(A)+; choose (~r ( < A +) increasing continuous, such 

that ~r  -< (H(x) ,  E, <X), A + 1 C_ ~r  []~r ---- A and (~B~: ~ <_ () E ~(+1.  

Let f13 =: Ur ~r  and 7 ) =: S<x(A) M ~ .  Let a E $_<~(A); it suffices to 

prove (3A E P)[a C_ A]. Let f~ be the <x-first f E I-I(RegNA) such that 

(Vg)[g e 1-I(Reg NA)&g e fl~r ~ g < f rood j~a], such f exists as rI(RegMA)/J bd 
is A+-directed. 

By [Sh420, 1.5, 1.2] we can find (Co: a < A +) such that: Co is a closed subset 

of a, o tpCo _< ~+, [/3 �9 nacc Co =~ C~ = Co M/3] and S =: {~ < A+: cf(6) = ~+ 

and 6 = sup C6} is stationary. 

Without loss of generality C �9 fl~0- 

Now we define for every a < A + elementary submodels N ~ N 1 of ~B: 

N ~ is the Skolem Hull of {fr r �9 Co}U{/: i _< ~} and N~ is the Skolem Hull of 

aU {fr ~ �9 Co} U {i:  i <_ ~}, both in (H(x), e, <x). 
Clearly: 

(a) N ~ c. N~ __C_ fl3a _c f13 [why? as fr �9 ~r because flBr e fl3r 

(b) [IN, i] < ~ + [leo[i, 
(c) N ~ �9 ~o+~. 

[Why? As a C_ ~Bo (you can prove it by induction on a)  clearly a �9 f13o+1, 

but C' �9 !li}0 C ~oq-1; hence Co E ~o+1, also (fiBs: -), _< a) �9 ~o-t-1 hence 

(f~: "r <_ a) �9 ~o+1,  hence (f~: 7 �9 Ca) �9 ~o+1. Now N ~ __ ~ a  �9 ~[3o+1 and 
the Skolem Hull can be computed in ~o+1.] 

(d) for each a with a+ > otp(Co), for some 7o < A +, letting ao =: 

N ~ (1 Reg NA\tr ++ clearly Cho �9 11 ao where Cho(0) =: sup(0 N N~), and 
we have: Cho < f~. ~ ao mod jbd 

[Why? ao �9 ~Bo+~ as N ~ �9 ~Bo+~, and 1-[ ao/J~ is A+-directed (trivially) and 

has cofinality < maxpcfj ,~ (ao) _< pp(A) = A +, so there is ( f j~: /3 < A+), <g,~- 

increasing cofinal sequence in l-I aa, so without loss of generality (f~~ :/3 < A +) �9 

~Bo+~" also by the "cofinal" above, for some/3 �9 (a, A+), Cha < f ~  mod jbd 
fle,. 

We can use the minimal/3, now obviously B �9 ~B~+: so f j~ �9 ~B~+:, hence 

f~~ < f~+~ rood J ~ .  Together "to =:/~ + 2 is as required.] 

(d) + for each a with otp(Co) < ~+ for some "to �9 (a, A+), for any # �9 Reg MN ~ 

letting N ~ =: Ch~o (N ~ O #), ao,~ = N ~ M RegMA \ / z  + and Cha,,  �9 
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Ha,~,~, be 
= ~ sup(0 n Y~) if 0 �9 Y 1, 

Ch~,~(0) 
t 0 otherwise, 

we have: Ch.  < f~. [ a . , ,  mod J ~ , .  

[Why? Clearly Ch~.  (N ~ U ~) E 9!~a+l, so a~,~ �9 ~ a + l ,  hence there are in !B.+l 

elements (b0[aa,~]: 0 E pcf(aa,~,)) and ((f~o,.,0: ~ < 0): 8 �9 pcf(ao,~)) as in [Sh 

371, 2.6, w So for some ~/a,~ �9 (a, A +) we have Ch~ [ b~+ [aa,u] < fT., so it is 

enough to prove a~#, \ b~+ [a~,u ] is bounded below ~ but otherwise pp(A) = A+ 

will be contradicted. Let ~/. = sup{'~,~,: # �9 NO}.] 

(e) E * = : { ~ < ~ + : a < ~ & i C a ] < _ ~ c = ~ 7 ~ < ~ a n d ~ > ~ } i s a c l u b o f ~ .  

Now as S is stationary, there is $(.) �9 S [3 E*. Remember otp C~(.) = ~+. 

Let C~(.) = {a$(.),r ~ < a+} (in increasing order). 

Let (for any ~ < ~+) M~ be the Skolem Hull of {f~(.). , :  ~ < r U{i:  i < g}, and 

let M~ be the Skolem Hun of a U {f~,(.),~: 5 < r u {i: i < ~}. Note: for ~ < ~+ 

non-limit {f~(.). , :  ~ < ~} = {f~: ~ e C~(.).r Clearly (M~: ~ < ~r (M~: ( < 

a+) are increasing continuous sequences of countable elementary submodels of 

and M~ ) ~_ M~ and for r < a+ a successor ordinal, N~,,.,r = M~ 
Now for each successor r for some e(~) �9 (r we have 7~(.),r < as(.),~(r 

(by the choice of / f ( . ) )  hence ~ ( . ) . r  < f~(.).,(r mod j~a hence Ch.~(.).r < 

f~'(*),.(a mod J ~ .  

Let E =: (5 < w~: for every successor ( < 5, e(() < ~}, clearly E is a club 

of ~;+. Let A = ~ i < ~  ;~i, A~ < A singular increasing continuous with i, wlog 

{hi: i < ~} C_ Ch~({i: i _< ~r o {;~}). So for some #r < ~, we have: 

(.) 
i < t r  =~ + 1 < ~+ & 0 �9 Reg n,~\~r & 0 �9 N ~ n N 1 

NX,(.),r nO < J'~,~(.),.(o(O) �9 O n N  ~ ~6(*),r " 

So for some limit i(r < ~+ we have Ai(r = sup{#r j < i(~)}. Now as cfA _< ~+ 

for some i(*) < A 

W =: {~ < ~;+: ~ successor ordinal and i(ff) = i(*)} 

is unbounded in ~:+. So 

| 
if ~ < ~+, ~ E E,  ~ = sup(~ n W) and 0 �9 M~ Reg [3)~ N M~'X'(')\~,(.) 

then M~ '~' [3 0 is an unbound subset of M~ [3 0. 
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Hence by [Sh400] 5.1A(1), remembering M~+ 1 = N O we have: M~ C ~$(*),~+t ~ 

N O hi(.)) whenever ~ E SkolemHull[Ur , N~+, U hi(.,] C SkolemHuU ( ,~ , ( . )  ,+, U 

E is an accumulation point of W. But a C_ M~ and the right side belongs to fl~ 

(as we can take the Skolem Hull in fl~6(.))- So we have finished. |1.1 

Remark: Alternatively note: cov(h, h, ~, 2) _< cov(0, h, a, 2) when a = cf(A) < 

< h, a = >  Ro, 0 = ppr(~,o)(h); remember cf(h) < ~r < h & pp(h) < h +~+ 

pp<a(h) = pp(h). 

1.2  CLAIM: For  h > /1 = c f ( / l )  > 0 > lqo, we have h(0) < h(1) < h(2) = h(3) 

and ifcov(0, R1, R1, 2) < g they are all equal, where: 

h(0) =: is the minimal ~ such that: ira C Regnh+ \# ,  [a[ < 0 then we 

can find (ae: e < w) such that a = U at and 
t<w 

(Vb) [b E S_<~o(~ ) =~ maxpcf(b) < K]. 

h(1) =: Min {1791:79 ~ s<~(h), and for every A _C ,~, IAI < 0 there 

= Am An C An+l such are An C_ A (n < w) ,A  U,,<~ 

that: for n < w, every a E S<so(A~ ) is a subset 

of some member of 79 }. 

h(2) is defined similarly to h(1) as: 

Min {179[: 79 c_ S<.(A) and for every A E S_<o(A) for some A~ c_ A(n < ~) 

A = U An and for each n < w for some 79, C_ 79, 179n1 < #, 
rl(o~ 

sup [B[ < # and every a E S<~o(An ) is a subset of some 
BET~ 

member of 79n }. 

A(3) is the minimal ~ such that: ira C_ RegNA+\#, [a[ _< 0, then we can find 

(al: t < ~), at C ae+l C_ a = Ue<~ ae such that: there is {be,i: i < it < #}, 

be,i c_ at such that maxpcf  bt,i <_ ~ and (Vc)[r C_ ae&[r _< Ro =~ Vi c C_ be,i]; 

equivalently: S<~ o (an) is included ha the ideal generated by (ha[an]: a E 0} 

for some 0 C_ ~;+ fl pcf a. of cardinality < #. 
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1.2A Remark: (1) We can get similar results with more parameters: replacing 

l% and/or R1 by higher cardinals. 

(2) Of course, by assumptions as in [Sh410, w (e.g. I pcf a I <_ lal) we get 

A(0) = A(3). This (i.e. Claim 1.2) will be continued in [Sh513]. 

Proof: 

A(1) < A(2): Trivial. 

A(2) < A(3): Let X = "13(A(3))+ and for ff < #+ we choose !Be -< (H(x),  E, <x), 

{A,p, 0, A(2),A(3)} E ~r I1 r = A(3) and A(3) C_ !13r ~r  (r < it +) increasing 

continuous and (~r ~ < r E ~r and let !B = ~t,+. Lastly let 7 9 = fi3NS<~,(A). 

Clearly 

(*)o a function a ~ (b~[a]: a E pcfa) as in [Sh371, 2.6] is definable in 

(H(x),  E, <x) hence ~ is closed under it. 

It suffices to show that 79 satisfies the requirements in the definition of A(2). 

Let A c_C_ A, IA I < 0. We choose by induction on n < w, N~, (for g < w) and 

N~, fn such that: 

(a) N~, N~ are elementary submodels of (H(x),  E, <x) of cardinality 0, 

(b) fn E 11 an where an =: N~ O Reg OA+\it, and .fn(a) > sup(N~ h a )  (for any 

o" E an),  

(c) 0 + 1 C_ N,~ C_ Nb C_ ~B, 

(d) N~ is the Skolem Hull of U{Rang .re: g < n} u A U (0 + 1), 

(e) N~ is the Skolem Hull of t~ + 1 in (H(x),  E, <~), 

(f) N~+ 1 is the Skolem Hull of N~ u Rang fn, 

(g) there are 79,~,e C_ $<~(A + 1) and An,e C_ N,~ (for l < w) such that: 

(a) [P-,el < it and #n,e =: suPnep=. , [BI < it and 79,,~,e C_ 79,~,e+1, 
(~) N~ = Ue A,~.e, 79,~ = Ue<~ P,~,e c_ ~ and A,~,e C_ A,~,e+l, 
(7) for every countable a C_ A N A~,e there is b E P,,,e satisfying a C_ b, 

(6) 79n,e = S<_t,.,,(A + 1) n (Skolem Hull of A,,e U 79n,e U (0 + 1)). 

As in previous proofs, if we succeed to carry out the definition, then 

U,~ (N,~ n ,~) = U ,  Nb n,X, but the former is Un,e A, ,ena,  hence A C U,~ Ue An,e, 
by (g)(a), (/3) the P:,e = {a n ,~: a E 79,,,e} are of the right form and so by (g)(~,) 

we finish. 

Note that without loss of generality: if a E 79n,e then a n Reg N(A + 1)\it E 

"Pn,~" 
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For n -- 0 we can define N~, N b, A,~,t trivially. Suppose N~,  N b ,  Am,e, 

Pm,t are defined for m _< n, t < w and fm (m < n) are defined. Now an is well 

defined and C_ R e g R ~ + \ #  C_ ~B and lanl < 0. So an = Ut an,e and an,e C_ an,e+1 

where an,t =: an N An,t and, of course, an,t c_ Reg NA+\# has cardinality < 8. 

Note that an,l is not necessarily in ~ but 

(*)1 every countable subset of an,t is included in some subset of ~ which belongs 

to 7~n.e and is C RegNA+\#.  

By the definition of ,k(3) (see "equivalently" there), for each n , / w e  can 

find an increase sequence (an,e.k: k < w) of subsets of an.e with union an,e and 

0,,,e,k C_ [#, ,k(3)] A pcf(an,e.k), 10~,e,kl < p such that: 

(*)2 if b C_ an,e.k is countable then b is included in a finite union of some members 

of {b~[an.e,k]: a �9 ~,t .k} (hence maxpcf(b) _< ~(3)). 

By the properties of pcf: 

(*)3 for each 2, k < w and r ___ RegN,k+\# such that r �9 :P,,e we can find 

r = e~ 'k C_ )~(3) + Npcf  r Ir _< IO,~.e.kl < # such that for every a �9 O,~,t.k we 

have: cNbo[an,e,k] is included in a finite union of members of {b,[c]: 7- �9 e,}. 

By [Sh371, 1.4] we can find f,~ �9 1-I,ea. a such that: 

(*)4 (a) sup(N b n a) < fn(a);  

(~) if r �9 Pn.t, t, k < w, r C_ Reg NA+\# and a �9 ,~,k C_ pcf(r N [#, A(3)] 
t,k 

(where e, is from (*)3) then for some m < w, a~ �9 a + n p c f ( c )  

and a n < ap , (for p _< m) the function f~ r (b~[r is included in 

Maxp<m f~'~'* ~ b ~  It] (the Max taken pointwise). 

Note 

(*)5 if b C_ an.t,k is countable (where e, k < w) then there is c �9 P , , t ,  Ir < P, 

r C RegnA+\p  such that b C_ r 

By (*)4 : 

(*)6 if ~, k < w, c �9 7~n,~, c C_ Reg r3~+\#, and a �9 ~n.t,k N ~(3) + N pcf C\# then 

You can check that (by (*)2 - (*)6) : 

(*)7 if b C an,e,k is countable then there is f,~.t,k �9 fB, I Dom f~ ' t 'k  I < # such 

that f~ I b C f:.t ,k. 

Let ~-~(i < w) list the Skolem function of (Y(x),  �9  <x)" Let 

r(A,,,jURang I,, ran,j,k)):i<e, j < t ,  k < t } ,  

U r,,':,,.'�9 U andS,, r,,.'�9 
rn~ t  rn<_t 
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and ~.+1,t -- S<~(~ + 1) N (Skolem Hull of A.+1,t U ~P~+1,t U (0 + 1) ). 

S o / . ,  ~.+1,t are as required. 

Thus we have carried the induction. 

A(3) < A(2): Let P exemplify the definition of A(2). Let a C RegNA+\~, 

[al _< 0(< #). Let J = J<_x(2)[a], and let 

J1 -- {b: b C_ a and there is (b~: i < i*), satisfying: bi C_ b, i* </~, maxpcf  bi _( 

A(2) and any countable subset of b is in the ideal which {bi: i < i*} 

generates }. 

Clearly J1 is an ideal of subsets of a extending J. Let 

J2 = {b: for some b, E J1 (for n <w) ,  b C U b " }  " n  

Clearly J2 is an Rl-complete ideal extending J1 (and J). If a �9 J2 we have that 

a satisfies the requirement thus we have finished so we can assume a ~t J2. As we 

can force by Levy (A(2) +, 2 n(2)) (alternatively, replacing a by [Sh355, w without 

loss of generality A(2) + = maxpcf  a and so tcf(I- I a/J2) - tcf(I-[ a/J) = A(2) +. 

Let ] = (f~: a < ~(2) +) be <j-increasing, /~ �9 1-I a, cofinal in YI a/J. Let 

!B -.< (H(x), �9 <~) be of cardinality A(2), A(2) + 1 C_ ~ ,  a �9 ~ ,  ] �9 ~ and 

T' �9 !D. Let P '  =: ~ n 8<~()~). 

For B �9 :pl (so IB[ < #) let gB �9 I'I a be gB(a) =: sup(a N B), so for some 

aB < A, gB <J  f~a. Let a ( , ) - -  sup{aB: B �9 P}, clearly a ( , )  < A(2) +. So 

ABe~ gB <J  f~(,). Note: P C :P' (as :P �9 ~ ,  17~1 < A(2), A(2) + 1 C ~ )  and for 

each B �9 P,  cB =: {a �9 a: gB(a) >_ f~(.)(a)} is in J and J C_ J1 _C J2. Apply 

the choice of P (i.e. it exemplifies ~(2)) to A =: Rang ]~(,), get (A,, :P,:  n < w) 

as there. Let a~ =: {a E a: ]~(.)(a) �9 A,}, so a = [.J, an, hence for some m, 

am r J2 (as a r J2, -/2 is Rl-complete) hence am r J1- As a �9 ~ ,  :P �9 

clearly P,~ C_ ~ .  So {ca: B �9 Pro} is a family of < # subsets of a, each in J and 

every countable b C_ am is included in at least one of them (as for some B �9 P, , ,  

Rang(fa(,) [ b) C B, hence b CcB)- Easy contradiction. 

A(3) _< A(0) XF cov(0, Rt, R1,2) < #: Let a C_ RegNA+\#, [a I < ~, let (at: ~ < 

w) be as guaranteed by the definition of A(0), let Pt  C_ S<~h(at) exemplify 

cov(0, Rl, N1,2) < /~, for each b �9 Pt  we can find a finite eb _C (pcfat)  n A+\~ 

such that b C_ U{ba[at]: a �9 e~} and {bt,~: i < i*} enumerates {e,: b �9 Pt}. 

A(O) _< A(1): Similar to the proof of A(3) _< A(2). 11.2 
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1.3 CLAIM: Assume No < cfA _< 0 < A < A*, pp(A) _< A* and 

cov(A*, A +, 0 +, 2) < A*. 

69 

Then coy(A, A, 0 +, 2) < A*. 

Proof'. Easy. 

1.3A Definition: Assume A >_ O = cf 0 > ~ = cf ~ > R0. 

(1) (C,75) E Te[8,~] if (C,75) E T*[0, n] (see [Sh420, Def 2.1(1)]), and 

6 E S(C') =~ 6 = sup(ace C~) (note: accC~ C_ C~), and we do not allow (viii)- 

(in [Sh420, Definition 2.1(1)]), or replace it by: 

(viii)* for some list (ai: i < 0} of U~es(~)P~,  we have: /5 E S(C'), a E acc C~ 

implies { a n  Z: a E P~,/3 E a n a} c_ {ai: i < a}. 

(2) For (C,75) e 7"$[0, g] we define a filter 7)~,O)(A) on [8<~(A)] <~ (rather 

than on S<~(A) as in [Sh420, 2.4]) (let X = :~+I(A)) : 

Y E /)~,7))(A) iff Y C_ (8<~(A)) <~ and for some x E S ( x )  for every 

(N~, N~: a < O, a E U~esPa} satisfying condition | from [Sh420, 2.4], and also 

[a E 79~&6 E S & a  < 0 =~ x E N ~ & x  E N~] there is A E ida(C) such that 

Remark: For 1.3B below, see Definition of Te(O, ~) and compare with [Sh420, 

Definition 2.1(2), (3)]. 

1.3B CLAIM: 

(1) I f  (C,P) �9 Te[O,tr (so A > ~ are regular uncountable) then D~O,~)(A ) is 

a non-trivial idea/on [S<~(A)] <~. 

(2) I f C  �9 T~ a], [6 �9 S(C') =~ 6 = supacc C~], :Ps = {C~ Na :  a �9 C~} 

then (C', 75) �9 7 -$ [0, ~]. It"C �9 7-1 [9, ~], [6 �9 S(C) =~ 6 = sup acc C~] and 

7)~ = S<Ro(Cs ) then (C,75) �9 7-$[0,~]. 

(3) / f 0  is successor of regular, a = c f a  < ~, there is C' E T~ O 7-riO, n] 

with: t'or 6 �9 S(C), C~ is closed, cf 6 = a and otp C~ divisible by w ~ (hence 

6 = sup ace C~). 

(4) Instead ot- "0 successor of regular", it su/~ces to demand 

(*) 0 > ~ regular uncountable, and A V cov(a ,~ , ,~ ,2 )  < ~. 
~<0 ~z~[~,O) 

Replacing 2 by a, "C~ closed" is weakened to "{otp(a ~ C~): a ~ C~} is 

stationary". 

Proo~ Check. 
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1.3C CLAIM: Let A > g = cf~; > R0, 0 ~- g+, (C,T') �9 T$[0,~] then the 

following cardinals are equal: 

U(0) = cf (S<~(A), C), 

# ( 4 ) =  Min{[ r l :  Y �9 :D~o,:~)(A)}. 

ProoF'. Included in the proof of [Sh420, 2.6]. 

1.3D CLAIM: Let hi >_ ho > ~ = cf~ > I%, 8 = ~+ and (C ,P )  �9 T~[8,~]. Let 

f13~, be a rich enough model with universe hi and countable vocabulary which is 

rich enough (e.g. all functions (from At to hi) definable in (H(=]~(A1)+), �9  <*) 

with any finite number of places). Then the following cardinals are equal: 

u*(0) = cov(hl, ho +, x, 2), 
, + ( 4 ) =  Min [ Y / ~ I  I:Y � 9  ,~)(hl) where <a~: i �9 ace C ~ ) ~ ~  

(a'(: i �9 accC6) iff A i e ~ 6  Skolem Hull ~ ( a ' i  U ho) = 

Skolem Hull ~x, (a'i U ho). 

Proof Like the proof of [Sh420], 2.6, but using [Sh400, 3.3A]. 

2. Equality Relevant  to Weak Diamond  

It is well known that: 

x = cf Ir & 0 > 2 <'r ~ cov(O, t~, to, 2) = 0 <'` =cov(O, x, ~, 2) <'`. 

Now we have 

2.1 CLAIM: 

(1) I f #  > A _> to, 0 =cov(# ,  A +, A +, x), cov(A, x, to, 2) <_ # (or <_ O) then 

cov(/~, A +, A +, 2) = cov(0, ~, x, 2). 

(2) I f  in addition A _> 2 <~ (or just 0 >_ 2 <~) then 

cov(#, A +, A +, 2) <~ =cov(# ,  A +, A + , 2). 

2.1A Remark: 

(1) A most interesting case is ~ = R1. 

(2) This clarifies things in [Sh-f, APl.17]. 

Proo~ (1) Note that 0 > # (because # > A _  ~;). First we p r o v e " < "  Let 

Po be a family of 0 subsets of # each of cardinality _< ,~, such that every subset 
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of # of cardinality _< A is included in the union of < ~ of them (exists by the 

definition of 0 =cov(# ,  A +, A +, to)). Let 7)0 = {A~: i < 0}. Let 7)1 be a family of 

cov(O, to, ~, 2) subsets of 0, each of cardinality < ~ such that any subset of 6 of 

cardinality < tr is included in one of them. 

Let 7) = :  {UieaAi: a E Pl} ;  clearly 7) is a family of subsets of # each 

of cardinality _< A, [7)} < [7)1} = cov(0, to, ~, 2), and every A _C #, [A) < A is 

included in some union of < a members of 7)o (by the choice of 7)0), say (Jieb Ai, 
b C__ 0, Ib] < to; by the choice of 7)1, for some a �9 7)1 we have b c a, hence 

A C__ Uieb Ai C_ ~Jiea Ai �9 7). So 7) exemplify cov(#, A +, A +, 2) <_ cov(0, to, ~, 2). 

Second we prove the inequality > . If a <_ Ro then cov(#, A +, A +, 2) = 

0 and coy(0, a, a, 2) = 0 so >_ trivially holds; so assume a > R0. Obviously 

cov(#, A +, A +, 2) > 0. Note, if ~ is singular then, as cf A + > A > tr for some 

~1 < ~, we have 0 = co v (# ,  A +, A +, to) = co v (# ,  A +, A +, to') whenever ~' �9 [~1, to] 

is a successor (by [Sh355, 5.2(8)]); also cov(O, ir a, 2) <_ sup{cov(0, to, ~', 2): ~' �9 

[~1, ~] is a successor cardinal} and cov(0, to, ~', 2) < cov(0, ~', ~', 2) when ~' < ~;, 

so without loss of generality tr is regular uncountable. Hence for any 01 < 0 we 

have 

(*)01 we can find a family P = {Ai: i < 81}, Ai C_ ~, [Ai[ _< A, such that any 

subfamily of cardinality _< A + has a transversal. [Why? By [Sh355, 5.4], 

(=+)  and [Sh355,1.5A] even for _< #.] 

Hence if 01 _< 0, cf01 < A + (or even cf01 _< #) then (*)01. Now we shall 

prove below 

(| (*)o, =~ cov(01, to, n, 2) _< cov(#, A +, A +, 2) 

and obviously 

(o2) if c fe  > then cov(e, 2) = cov( , 2) 
a < 0  

together; (as 0 _< cov(0, A +, A +, 2) which holds as A < # _< 0) we are done. 

Proof of | Let {Ai: i < 01} exemplify (*)01 and P2 exemplify the value 

of cov(#,A +,A +,2). Now for every a C_ 01, [a I < ~, let Ba =: [-Jie~Ai; so 

Ba C_ #, [B,I _< A hence there is A~ E 7)2 such that: B~ c_ A~. Now for A E 7)2 

define b[A] -=: {i < 81: A~ c A}; it has cardinality <_ ), (as any subfamily of 

{Ai: A~ C_ A} of cardinality _< A + has a transversal). Note a C_ biAs] (just read 
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the definitions of b[A] and Aa; note a e 3<~(01)). For A E P2 let :PA be a family 

of < coy(A, ~, g, 2) subsets of b[A] each of cardinality < ~ such that any such set is 

included in one of them (exists as [b[A]l < A by the definition of cov(A, ~, ~, 2)). So 

for any a E S<~(Ol) for some c E 7~A., a C_ c. We can conclude that  U{PA: A E 

P2} is a family exemplifying cov(01, a, ~, 2) < cov(#, A +, A +, 2) + cov(A, ~, a, 2) 

but the last term is _< # (by an assumption) whereas the first is >_ # (as # > ~) 

hence the second term is redundant. 

(2) By the first part it is enough to prove cov(O, g, g, 2) <~ = cov(O, a, ~, 2), 

which is easy and well known (as 0 >_ # > A >_ 2<~). ~.1 

2.1B Remark: So actually if/z > A >_ to, 0 -- coy(#, A +, A +, a) then (0 _> /~ > 

A _> g and) 

cov(~, ~+, A +, 2) _< cov(~, A +, A +, ~) + coy(0, ~, ~, 2) 

= 0 + cov(O, ~,  to, 2) = coy(O, ~, ~, 2) 

and 

coy(O, ~, ~, 2) < cov(~, ~+, ~+, 2) + cov(~, ~, ~, 2), 

hence, cov(0, to, ~, 2) = cov(/~, A +, A +, 2) + cov(~, ~, ~, 2). 

3. Cof lna l i ty  of  S_<~ 0 (~) for ~ Rea l  Valued  M e a s u r a b l e  a n d  Trees  

In Rubin-Shelah [RuSh117] two covering properties were discussed concerning 

partition theorems on trees, the stronger one was sufficient, the weaker one nec- 

essary so it was asked whether they are equivalent. [Sh371, 6.1, 6.2] gave a partial 

positive answer (for ~ successor of regular, but then it gives a stronger theorem); 

here we prove the equivalence. 

In Gitik-Shelah [GiSh412] cardinal arithmetic, e.g. near a real valued mea- 

surable cardinal ~, was investigated, e.g. {2~: a < ~} is finite (and more); this 

section continues it. In particular we answer a problem of Fremtin: for ~ real 

valued measurable, do we have cf(S<~ 1 (~), C) = ~? Then we deal with trees 

with many branches; on earlier theorems see [Sh355, w and later [Sh410, 4.3]. 

3.1 THEOREM: Assume A, O, ~ are regular cardinals and ~ > 0 = ~ > Ro. Then 

the following conditions are equivalent: 

(A) for every # < A we have cov(#, 8, ~, 2) < A, 

(B) ifl~ < A and a,~ E S<~(/~) for a < A then for some W c_ A ofcardinality A 

we have [U~ew as[ < 0. 
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3.1A Remark: (1) Note that (B) is equivalent to: if as  �9 S<~(A) for a < A, 

then for some unbounded S c_C_ {6 < A: cf(/5) > ~} and b �9 S<o(A), for a ~ B in 

S, as N a~ C_ b (we can start with any stationary So C_ {/5 < A: cf 6 _> ~}, and 

use Fodour Lemma). 

(2) We can replace everywhere 9 by ~, but want to prepare for a possible gener- 

alization. By the proof we can strengthen "W _C A of cardinality A" to "W _C A 

is stationary" (for -~(A) ~ -~(B) this is trivial, for (A) ~ (B) real), so these two 

versions of (B) are equivalent. 

Proof." 

(A)=~(B): 

Trivial [for # < A let P~ c_ S<0(#) exemplify cov(#, 8, ~, 2) < A; suppose 

# < A and as �9 S<~(p) for a < A are given, for each a for some As �9 P~, we 

have as C As; as IP,I < A-- cfA for some A* we have W =: {a < A: Am = A*} 

has cardinality A, so S is as required in (B)]. 

-~(A) ~ -~(B): 

FIRST CASE: For some # e [9, A), cf # < ~ < # and pp+~(#) > A. Then we can 

find a C RegA#\9, [a[ < ~, supa = # and maxpcfj~d a > A. So by [Sh355, 2.3] 

without loss of generality A = maxpcfa;  let (fs: a < A) be <j<xia]-increasing 

cofinal in 1-I a. 

Let as = Rang(fs) ,  so for a < A, as is a subset of # < A of cardinal- 

ity < r. Suppose W C_ A has cardinality A, hence is unbounded, and we shall 

show that  # = ]Usew am]; as # _> O this is enough. Clearly as = Rang f~ __C_ 

supa = p, hence U s e w a s  c_ #. If IU~ewas]  < # define g E l-I a by: g(a) 

is sup (a N Usew as) if a > I Usew asl and 0 otherwise. So g E I-I a hence 

for some ~ < A g < fO mod J<~[a]. As the f~'s are <j<~[a]-increasing and 

W _c A unbounded, without loss of generality ~ E W, hence by g's choice 

[o �9 a \ l U s e w  + < but {a: a �9 a ,a  > IU0ew asl + } r 
(as # is a limit cardinal and max pcfj~d (a) >_ A), contradiction. 

The main case is: 

SECOND CASE: For no D E [0,)~) is ai D < ~ < /~, pp<+~(/~) > A. Let X =: 

~ ( A )  +, fl~ be the model with universe A and the r.elations and functions definable 

in (H(x),  e, <x) possibly with the parameters ~, 9, A. We know that A > 9 + 

(otherwise A = 9 + and (A) holds). Let S C_ {~ < A: cf~ = 8} be stationary and 
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in I[A] (see [Sh420, 1.5]) and let S C_ S +, C = (Co: a �9 S +) be such that: Co 

closed, o tpCo _< 0, [~3 �9 nacc Ca =~ Ca = Ca n fl], [otp Ca = ~ r a �9 S] and 

for a �9 S + limit, Ca is unbounded in a (see [Sh420, 1.2]). 

Without loss of generality C is definable in (f13, ~, 0, A). Let S0 �9 [0, A) 

be minimal such that cov(so, 0, ~, 2) > A, so So > 0, n > cf So. We choose by 

induction on a < A, ~o,  ao such that: 

(a) ~ -~ (H(x) ,  E, <x), I[~ol[ < A and ~lo n • is an ordinal and 

{A, s0 ,0 ,~ ,~ ,C}  �9 ~t~. 
(~) ~t~(a < A) is increasing continuous and (~ta: fl _< a) �9 2[~+1. 

(7) as  �9 S<~(S0) is such that for no A �9 S<0(S0) n ~i~ is as  c_ A. 

There is no problem to carry the definition and let ~ = U~<~ ~ .  Clearly 

it is enough to show that ~ = (as: a < A) contradict (B). Clearly S0 �9 (0, A) and 

ao �9 S<,,(S0). So let W C_ A, [W[ = A and we shall prove that [ U,~ew ao[ > 0. 

Note: 

(*) if a C_ [0, A), I"1 < ~, a �9 ~t~ (and a c_ Reg, of course) then (1-I a) N 2~ is 

cofinal in I-Ia (as maxpcf  a < A). 

Let R = {(a, f~): f~ �9 ao, a < A} and 

E =: {6 < A: (26, R [ 6 , w n 6 , s 0 )  -~ (~,R,W, so) and ~,~n~ = 6 }. 

hence we can find 6(*) �9 S n acc(E). Let C~(.) = 

order). We now define by induction on n < w, M,~, 

Clearly E is a club of A, 

{7i: i < O} (in increasing 

(N~: ~ < 0), fn such that: 

(a) Mn is an elementary submodel of (~, R, W), IiMnl[ = 0, 

(b) (N~: ~ < 0) is an increasing continuous sequence of elementary submodels 

of fl~, 

(c) Ilg~'ll < 0, 
(d) N~ e ~16(.), 

(e) Ur  IN~'I _c IM.I, 
(f) f,~ e l-I(Reg riM,),  

(g) fn(a)  > sup(M,, n a) for a �9 D o m ( / , ) \ 0  +, 

(h) for every ( < 0, $,  [ (RegnN~' \  0+) �9 ~l~(.), 

(i) N~ is the Skolem Hull in fl~ of {7i, i: i < r 

(j) N~ +1 is the Skolem Hull in fl~ of N~' U {$n(a): a �9 RegnN~' \0+},  

(k) Mn is the Skolem Hull in (~, R, W) of Ut<n Mt u Ur N~'. 
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There is no problem to carry the definition: for n = 0 define N~ by (i) 

[trivially (b) holds and also (c), as for (d), note that C �9 !~o -~ 2~(.) and 

{3'i: i < ~} �9 ~ ( , )  as C is definable in ~ hence {(a, 3', ~): a �9 S +, ~ < 0, and 3' 

is the r member of Co} is a relation of ~ hence each C7r < 0) is in ~ ( , )  

hence each {3'i: i < ~} is and we can compute the Skolem Hull in 2-r~ for j < 0 

large enough]. 

Next, choose M,  by (k), it satisfies (e) + (a). If (N~: ~ < 0), M~ are 

defined, we can find f,~ satisfying (f) + (g) + (h) by [Sh371,1.4] (remember (*)). 

For n + 1 define N~ by (j) and then Mn+x by (k). 

Next by [Sh400, 3.3A or 5.1A(1)] we have 

(*) U M,,A6(.)  : U N~'n6( . )  hence U N~AW is unbounded in 6(*), 

r  r  

hence for some n 

(*)n U N~' n W is unbounded in 6(*). 
r 

Remember N~ �9 ~15(.) = U~<~(.) 2~ = U~<o ~ , "  So for some club e of 0 

we have: 

(e) i f ~ � 9  ~ < ~  then: N ~ � 9 1 6 2  a n d ? r 1 4 9  

(remember 5(.) e acc(E)). 

Hence, for ~ E e, we have: ~t~r n ,~ = 3'r and W n N~\  sup N~' r 0 for 

every ~ < ~. Let e = {~(e): e < 0}, ~(e) strictly increasing continuous in e. 

Now for every < 0, �9 (and (a,: Z < sup(  n �9 

hence Ax =: U{a~:/3 �9 w n N~(,)} C_ A2 =: U{a/~: ~ �9 N~(c+l) } n/~0 �9 ~Ltr 

and A2 is a subset of/~o of cardinality < 0 hence (by the choice of the a~'s 

above) a~r !Z A2 hence a~r q: U{a/~:/3 �9 W n N~(~)}; moreover, similarly 

3'r < 7 < A ~ a.yg U{af~: Z �9 W n N~'(,)}. 
But W O N~(,+2)\3'r ) r 0, hence (U{aa:/3 �9 w o N~(,)}: e < 0) is not 

eventually constant, hence 

has cardinality 0. Hence Uzew a/~ has cardinality _> 0, as required. ~3.1 



76 S. SHELAH Isr. J. Math. 

3.2 Conclusion: (1) If A is real valued measurable then ~ = cf [S<s~ (A), C_] 

(equivalently, coy(A, R1, R1, 2) = A). 

(2) Suppose A is regular > g = cf g > Ro, I is a A-complete ideal on A extending 

J ~  and is R-saturated (i.e. we cannot partition A to g sets not in I). Then for 

a < A, cf(S<~(a), C) < A, equivalently coy(a, g, ~, 2) < A. 

3.2A Remark: (1) So for regular 0 e (g, A) (in the above situation) we have 

As<~ cov(a, 0, 0, 2) < A; actually ~ _< cf 0 _< 0 < A suffices by the proof. 

Prooiq (1) Follows by (2). 

(2) The conclusion is (A) of Theorem 3.1, hence it suffices to prove (B). Let 

# < A a n d a s  E S<~(#) f o r a  < A be given. As g < A = c f A  without loss of 

generality for some a < g, A~<x [a~[ = a. Let f~ be a function from a onto as, 

so R a n g / s  C_ #. Now for each i < a, ({a < A: f~(i) = 7}: 7 < #) is a partition 

of A to p sets; as I is R-saturated, bl =: {7 < #: {a < A: fa(i) = 7} r I} has 

cardinality < ~, hence b =: Ui<o bi has cardinality < g + a + _< g (remember 

a < ~ = cfg).  For each i < a, 7 E #\bi the set {a < A: f~(i) = 7} is in I; so as 

I is A-complete, A > # we have: {a < A: fo(i) r bi} is in I.  Now let 

W = : { a < A :  for s o m e i < a , f ~ ( i ) ~ b i } C _  U { a < A : f ~ ( i ) r  
i<o 

This is the union of _< a < A sets each in I,  hence is in I,  so IA\W[ = A, and 

clearly 

[,] a .  = {S.(i):  �9 A\w,i < c {So(i): < A,- .S.( i)  r b. i  < c b, 
aE~,\W 

and [bl < g so A\W is as required in (B) of Theorem 3.1. Ila.2 

3.3 LEMMA: For every A there is #, A _< # < 2 ~ such that (A) or (B) or (C) 

below holds (letting ~ = Min{0:2 0 = 2~}) : 

( A ) # = A and for every regular X -< 2~ there is, a tree T of  cardinality <_ A 

with >_ X cf(g)-branches (hence there/s  a linear order of cardinality >_ X 

and density <_ A). 

(B) # > A/s singular, and: 

(a) pp(#) = 2 ~ (even A = g =~ pp+(#) = (2~)+), c f#  _< A, (V0)[cf6 _< 

A < 0 < # = ~ p p ~ 0 < # ]  (and#<_2 <~) 

hence 



Vo[. 95, 1996 FURTHER CARDINAL ARITHMETIC 77 

((~)' for every successor* X _< 2 ~ there is a tree from [Sh355, 3.5]: cf # 

levels, every level of cardinality < II and X (cf #)-branches, 

(~) for every X E (A, #), there is a tree T of cardinality A with >_ X 

branches of the same height, 

(7) cf/~ _> c f r  and even c f~  > Ro =~ PPr(cr~)(#) =+  2A. 

(C) Like (B) but we omit (a) and retain (a)'. 

Proo~ 

FIRST CASE: ~ = R0. Trivially (A) holds. 

SECOND CASE: I~ is regular uncountable. So g _< A and 2 ~ = 2 ~ and [0 < ~ 

20 < 2 ~] hence 2 <~ < 2 ~ ( remember  cf(2 ~) > a). Try  to apply [Sh410, 4.3], its 

assumptions (i) + (ii) hold (with a here standing for A there) and if possibility 

(A) here fails then the assumption (iii) there holds, too; so there is p as there; so 

(a) ,  (-~) of (B) of 3.3 holds** and let us prove (f~), so assume X E (A, #),  without  

loss of generality, is regular, and we shall prove the s ta tement  in (f~) of 3.3(B). 

Wi thout  loss of generality X is regular and # '  E (A, •) &cf  p '  _< A =v pp~(#~) < )/; 

i.e. X is (A, A +, 2)-inaccessible. [ Why?  If ~ is not as required, we shall show how 

to replace X by an appropria te  regular X ~ E [X, #).] 

Let  # '  E (A,X) be minimal  such tha t  pp~(# ' )  > X, (so c f # '  < A) now 

pp(# ' )  < # (by the choice of p) and ~'  =:  pp(# ' )+ ,  by [Sh355, 2.3] is as required] .  

Let 0 be minimal  such tha t  2 ~ > X. So trivially 0 < a < A < )C and 

(2<~) ~ = 2 ~ hence p _< 2 <~ hence ;~ < 2<~; as ) / i s  regular < 2 <~ but  > A > a, 

clearly ~ < ~ ~ A; also trivially 2 <e < X -< 2~ but  X is regular > A > g :> 

and [a < 0 ~ 2 ~ < X], so 2 <e < X -< 2~ TrY to apply [Sh410, 4.3] with 0 

here standing for A there; assumptions (i), (ii) there hold, and if assumption 

(iii) fai/s we get a tree with < 0 nodes and > X t~-branches as required. So 

assume (iii) holds and we get there #~; if #~ _< A we have a tree as required; if 

* If A -- a, just regular, and we can change A for this. 
** Alternatively to quoting [Sh410, 4.3], we can get this directly, if 

cov(2<~,A+,(cf~) +, cf~) < 2 ~ we can get (A); otherwise by [Sh355, 5.4] for 
some #o �9 (A,2<~], cf(#0) = cf~ and pp(#0) = (2~). Let # �9 (A,2 <~] be minimal 
such that c f#  _< A & pp~(#) > 2 <~. Necessarily ([Sh355, 2.3] and [Sh371, 1.6(2), 
(3), (5)]) pp~(#) = pp#  = PP(]~0) = (2 x) and (again using [Sh355, 2.3]) we have 
(Vg)[cf0 < A < 0 < # =v ppx(O) < ~]; together (a) of (B) holds. Also # _< 2 <~, 
hence cf(~) < n =~ pp#  < ]L <~ < 2 <~, contradiction, so (~) of (B) follows from 
(a). Note that if we replace A by ~ (changing the conclusion a little; or A = ~) 
then by [Sh355, 5.4(2)] if 2 ~ is regular the conclusion holds for X ~ 2 ~ too. 
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#' E (X, 2 <s] C_ (A, X) we get contradiction to "X is (A, A +, 2)-inaccessible" which, 

without loss of generality, we have assumed above. 

THIRD CASE: ~ issingular (hence 2 <~ is singular, cf(2 <~) = cf~). Let # =: 2 <~ 

and we shall prove (C); easily (B)(7) holds. Now ~>2 is a tree with 2 <~ = /A 

nodes and 2 ~ = 2 ~ ~-branches, so (a) '  of (C) holds. As for (/3) of (B), if ~ is 

strong limit checking the conclusion is immediate, otherwise it follows from 3.4 

part (3) below. 

Clearly if cf ~ > Ro, also (B) holds. 13.3 

3.4 CLAIM: 

(1) Assume 0n+1 = Man {0:2 ~  ~ for n < w and ~ n < ~ 0 n  < 200 (so 

0n+1 is regular, 0n+1 > On). Then: for infinitely many n < w, for some 

/An E [0n,0n+l) (so 2 ~'" = 2 ~ we have: 

(*)~.,o. for every regular X -< 2~ there is a tree of  cardinality ~An with >_ X On- 

branches; if~An > 0,~ then cf(/An) = On,/An is (On, 0~ +, 2)-inaccessible. 

(2) Moreover 

(a) for every n < w large enough for some ~An : 

On <_ ~An < ~ Om and (*)~,.,o. and cf(/An) = On, 
r n < w  

[~An > On =~ ~An is [(On, On +, 2)-inaccessible, PP(/An) = 20"]. 

(/3) Moreover, for infinitely many m we can demand: /or every n < m, 

X = cf X <_ 2~ the tree T x (witnessing (,)~,.,o. for X) has cardinality 

r 0re.i- 1 0.e. /Am < 0m-l-l). 

(3) I f  ~ is singular, r < 2 <~ < 2 ~ then for every regular X E (R, 2<~), there 

is a tree with < ~ nodes and >_ X branches (of same height). Also for 

some 0" E (~, pp+(r))  N Reg, for every regular X <_ 2 ~ there is a tree T, 

IT[ _< ~ f~ ,  with >_ X O*-branches. 

Proof: Clearly (2) implies (1) and (3) (for (3) second sentence use ultraproduct). 

Let 0 =: )-'~,~<~, 0n. Let So =: {n < ~v: (*)o,,o. fails }. Let for n E w\So, #,~ = 0n 

and note that (a) of 3.4(2) holds and if So is co-infinite, also (/3) of 3.4(2) holds. 

We can assume that So is infinite (otherwise the conclusion of 3.4(2) holds). By 

[Sh355, 5.11], fully [Sh410, 4.3] for n E So there is/An such that: 

(a)n On = c f # n  </An -< 2 <~ 

(/3), PPr(s.)(/An) -> 2 s" (hence equality holds and really PP+(s.)(/~) = (2~ +) 

and 
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('7),~ 0,~ < #' < I.t,~&cf #' < 0, =~ pp<#~(/~') < #,~ hence pp+ (#n) = PP+(s~)(P-) 
= (2o ) 

Note that 2 <~ = 2 ~ so #,, < 2 ~ By [Sh355, 5.11] for n E So, part (a) (of 

3.4(2)) holds except possibly/~,, < 0. 

Remember cf(#n) = 0n. 

Let n < m be in So and/~,, > 0m, so Max{cf#,~,cf #,~} = Max{~,,, Ore} < 

Min{#,,, #,,} so by ('~),, (and [Sh355, 2.3(2)]) we have #,~ > #m. Note cf#,, = 0,,, 

cf#m = 0,~ (which holds by (a),,, (a)m) hence #,~ > p,,,. As the class of cardinals 

is well ordered we get $1 =: {n < w: n �9 So,/~,~ > 0,~+1} is co-infinite and 

S =: {n: # ,  > ~} is finite (so (a) of 3.4(2)(b) holds). 

So for some n(*) < w, S _C n(*) hence for every n �9 [n(*),w) for some 

m �9 (n ,w) , /~ ,  < 0m. Note: n # m :~ #,, # #,~ (as their cofinalities are distinct) 

and In r So :* #,~ r {0m: m < w}]. Assume n > n(*), i f# , ,  > 0~+1, let 

m = mn = Min{m: #m+l > #,, and m E n} (it is well defined as ~/k #n < 0k 

and 0k < #k < 0 = [.Je<~ 0e) and we shall show pm < 0m+1; assume not, hence 

m �9 So; so /~-,+1 -< 2 s" = PPr(o..)(#m) -< PPo..+~(#m) but #m <_ # ,  (by the 

choice of m) so as cf(#m) = ~,~ # 0m+1, necessarily #m > 0-~+1 and i f m + l  r So 

trivially and if m + 1 �9 So by one of the demands on #,~+1 (in its choice) and 

[Sh355, 2.3] we have #m+l _< ~tm; but #m </~ , ,  so #-~+1 < # ,  contradicting the 

choice of m. So by the last sentence, n _> n(*) ==~ #m~ < 0m~+1. By [Sh355, 

5.11] we get the desired conclusion (i.e. also part (/~) of 3.4(2)). 113.4 

Remark: It seemed that  we cannot get more as we can get an appropriate prod- 

uct of a forcing notion as in Gitik and Shelah [GiSh344]. 

4. B o u n d s  for PPr(~I) for L imi t s  o f  Inaccessibles* 

4.1 Convention: For any cardinal/z, /~ > c f#  = R1 we let y~, Eq,  be as in 

[Sh420, 3.1], ~ is a strictly increasing continuous sequence of singular cardinals 

of cofinality Ro of length wl, ~t : ~ - ' ~ 1  ~"  

SO # stands here for/J* in [Sh420, w w w (Of course, R1 can be replaced 

by 'Yegular uncountable" .) 

* In previous versions these sections have been in [Sh410], [Sh420] hence we use y, 
etc. (and not the context of [Sh386]); see 4.2B below. 
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4 . 2  THEOREM (Hypothesis [Sh420, 6.1C]* ): 

(1) Assume 

(a) # > cf/~ = R1, Y = Y~, Eq~ C_ Eq~, 

(b) every D E FIL(y)  is nice (see [Sh420, 3.5]), E = FIL(y)  (or at least 

there is a nice C (see [Sh420, 5.2-5], E = U C = Min C, s is #-divisible 

haying weak p-sums, but we concentrate on the first case), 

(c) # < A < pp+(#),  A inaccessible. 

Then there are e E Eqg and (A~: x E Y/e),  a sequence of inaccessibles < # and 

a D E FIL(e, 3)) N E nice to #, D E FIL(e, yg)  such that: 

(a) lls~y~/e As/D has true cofinality A, 

(B) # = tlimo(A~: z E Y~,). 

(2) We can weaken "Co)" to "E C_ FIL(Eq, y )  and for D E E, in the game 

wG(#, D, e, Y) the second player wins choosing filters only from E. 
0 e (3) Moreover, for given co, Do, (A~ x E Y/eo), if l-I~ey/~o A J  D o is A-directed, 

then without loss of generality eo <_ e, Do <_ D and As <_ Asieo~. 

4.2A Remark: (1) We could have separated the two roles of # (in the definition 

of Y, etc. and in A E (#, pp+(/z))) but the result is less useful; except for the 

unique possible cardinal appearing later. 

(2) Compare with a conclusion of [Sh386] (see in particular 5.8 there): 

THEOREM: Suppose A > 2 ~1 , A (weakly) inaccessible. 

(1) If  R1 < Ai = cfA~ < A for i < wl, D is a normal filter on wl, YL<~I A~/D 

is A-directed, then for some A~, HI ( A~ = cf A~ _< Ai and normal filter D' 

extending D, A = tcf (rL<~,~ A~/D') and {i: Ai inaccessible} E D'. 

(2) IfRI = cf~ </~ < A, PPr(~)(#) -> A then forsome (A{: i < w1>, R1 < Ai = 

cfAi < #, each Ai inaccessible and A E pcfr(~){Ai: i < wl}. 

Proof of 4.2: (1) By the definition of pp+(#) (and assumption (c), and [Sh355, 

2.3 (1) + (3)]) there are D E E and f E Y~/r such that: 

(A)I /~ > f (x)  = cf[/(x)] > ~(~), 

( B ) L ,  A = tcf [I 'LEy/ef(x)/D[- 

Let Ko =: {(.f,D): D E E , I  ~ Y , / ~  and conditions (A)! and (B)s,D hold}, so 

Ko ~ 0. Now if (], D) E Ko, for some "r 

(C)I,D,~ in G'r(n, f ,  e, Y) the second player wins (see [Sh420, 3.4(2)1) 

* I.e.: if a C Reg, Ial < rain(a), A inaccessible then A > sup(A M pcf a). 
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hence K1 ~ 0 where K1 =: {(f, D, 7) E Ko condition (C)I,D,~ holds}. 

Choose ( f l ,  D1, "r0) E K1 with "r0 minimal. By the definition of the game 

(*) for every A ~ 0 mod D1 we have ( f l ,  D1 + A,~/0) E K1. 

Let el = e(D1). 

CASE A: {x: f l (x )  inaccessible} ~ 0 mod D1. We can get the desired conclu- 

sion (by increasing D1). 

CASE B: {x: f l (x )  successor cardinal} ~ 0 mod D1. By (*), without loss of 

generality f l (x )  = g(x) +, g(x) a cardinal (so > #~(~)) for every x �9 y~,/e. By 

[Sh355, 1.3] for every regular ~ �9 (#, A) there is f~ �9 (Y/~) Ord satisfying: 

(a) f~ < f l ,  each f,~(x) regular, 

(b) tlimDlf,~ = /1, 

(c) l-Ix f~(x)/D1 has true cofinality ~. 

By (a) we get 

(d) f .  < 9. 
By (b) we get, by the normality of D1, that for the Dl-majori ty of x �9 Y/e,  
f~(x) >_ #,(x); as f~(x) is regular (by (a)) and #,(x) singular (see 4.1) we get 

(e) for the Dl-majority of x �9 Y/e, we have f~(x) > #,(x). 
Let ~ be large enough, let N be an elementary submodel of (H(;(), �9  <x), 

A �9 N, D1 �9 N, N n A is the ordinal liNl[ (singular for simplicity) and 

{/2, ( f l ,  g, fK: t~ �9 Red n(u, A))} belongs to N. Choose a e Red n•\(sup A n N), 

now in rIxey/~l f,,(x)/D1, there is a cofinal sequence (f~,r ( < K); as ~ > 

sup(A n N),  so for some r < g: 

| h �9 Y n  y/r,  Ord =~ {x �9 Y/el: /~,r  < h(x) < .f~(x)} = 0 modD1.  

[Why? For any such h define h' e Y/~Ord by: h'(x) is h(x) if h(x) < f~(x) 
and zero otherwise, so for some ~h < ~;, h' < .f~,r mod D1. Let ((*) = 

sup {r h �9 N n y/~' g } ;  it is < ~; as I[Y[I < ~, and it is as required.] 

Let f ,  = f~,r The continuation imitates [Sh371, w [Sh410, w 

Let 

K 2 = { ( D , B , ( j ~ : x e 3 ) / e l ) ) : D I C _ D e E ,  player II wins V~> ( f l ,  D), 

el = e(D),[~ = (< Bx,j: j < jo _< #~(x) > :x  E Y/e l )  E N, 

[Bz,j~ I ~ g(x) and j~ < jo _< #,(x), 

{x e Y/el:  f , (x)  is in Bxd:) �9 D~. 
J 
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Clearly K2 r 0. For each (D, [~, (j~: x �9 Y /e l ) )  �9 K2 : 

(*)1 letting h �9 Y/~' Ord, h(x) = [Bxd.[, for some h = ( ( 0 , f t ) , ( ( 0 ) , h ) ) ,  for 

some 7<0> < 7<> and D player II wins in G(ET<>n<~ h, el, Y,). 

So choose (D, B, (j~: x �9 Y /e t ) ,  7(0)) such that: 

(*)2 (D,/}, (j~: x �9 Y /e l ) )  �9 K2, (*)1 for 7(0) holds and (under those restric- 

tions) 7(o) is minimal. 

So (as player I can "move twice"), for every A �9 D +, if we replace D by D + A, 

then (*)2 still holds. 

So without loss of generality (for the first and third members use normality): 

(*)3 one of the following sets belongs to D: 

Ao,( = {x �9 Y/ey: cf[B~,/.[ > #,(~) and jo < #r } 

(for some ~ < wl such that [Y/el[ < #~), 

A1 = {x �9 Y/el :  cf IB~,5.[ < #,(~) _< IBm,5.] } , 

A 2 , r  ~ and j~ < #~ } (for some ~ < wt). 

If A2,r �9 D then (for x �9 Y / e l )  

B~ =: [.J {Bxs: x �9 Y / e l , j  < jo and IB~,j.[ < #~ and j < #<} 

is a set of <_ #r ordinals and 

{x �9 y / e , :  f . ( x )  �9 B*~} �9 D 

and (B;: x �9 Y / e t )  belongs to N (as (D,/~,(j~: x �9 Y/e l ) )  �9 K2 and the 

definition of K2), contradiction to the choice of f .  (see | remember Di  C_C_ D by 

the definition of K2). 

If A1 �9 D, we can find/~1 �9 N, j~l = ( ( B I , j :  j < j~ < #~(.)): X �9 Y/el) ,  

lB,,j[ _< g(z) and Aj<j_~ [cf IBm,j[ > #,( . )V ]B~,jl = 1] and each B. , j  satisfying 

1 of smaller cardinality cf [Bxdl < #i(x) is a union of cf IB.dl sets of the form B., j l  

and so for some j~ < j~, f . ( x )  �9 Bxs .  ::v f . ( x )  �9 Bx,fl_ & [B~,j~I < [B~,j.]. 

Now •laying one move in E ~ , , , j we get contradiction to choice 

of 7(0). 

We are left with the case Ao,i �9 D, so without loss of generality 

A~,~ cf IBm,j[ > #,(~). Let 

�9 0 �9 

a = {cf IBi,jI: cf IB:,jl > U,(=),x �9 Ylel,j < 3: ,J  < U< and e(x) > r  
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so a is a set of regular cardinals, and (remember ly/e l I  < pC) we have ]a I < Mina, 

so let 6 = (b0[a]: 0 �9 pcf a) be as in [Sh371, 2.6]. So as (by the Definition of K2), 

((B~,j: j < jo): x �9 Y/e l )  �9 N, clearly a �9 N hence without loss of generality 

�9 N. Let A* = sup[A n pcfa], so by Hypothesis [420,6.1(C)], A* < A, but  

A * � 9  s o A * + I C N .  

By the minimality of the rank we have for every 0 �9 A* n pcfa,  

{x �9 y/el: cf IB~,j~I �9 bo} = 0 mod D hence I-I~ cf ]B~,j,I/D is A-directed, hence 

we get contradiction to the minimality of the rank of f l .  

(2), (3) Proof left to the reader. It.2 

4.2B Remark: 

(1) The proof of 4.3 below shows that in [Sh386] the assumption of the existence 

of nice filters is very weak, removing it will cost a little for at most one place. 

(2) We could have used the framework of [Sh386] but not for 4.3 (or use forcing). 

4.3 CLAIM (Hypothesis 6.1(C) of [Sh420] even in any K[A]): Assume # > cf # = 

R1, /z > 0 > R1, PPr(o,~I)(P) > A > #, A inaccessible. Then for some e �9 Eq~, 

D �9 FIL(e, yg)  and sequence of inaccessibles (Az: x �9 Yg/e), we have tlimD A~ = 

# and A = tcf( r  I A~/D) except perhaps for a unique A in V (not depending on 

#) and then PP+(o,~)(#) < A+" 

Vroo~ By the Hyp. (see [Sh513, 6.12]) for some a C_ Regn# ,  [a] < Min(a), 

A = maxpcf(a) ,  and 

( v ;  < _c a Ibl < 0 > sup pcf (b) > A'], 
N1 --complete 

J = J<~[a]. First assume "in K[A] there is a Ramsey cardinal > A ~ when 

A C A ~ Choose A C_ A0 such that ~ C L[A] and for every a < A ~ there is a one 

to one function f~ from [(~[ (i.e. lal v)  onto (~, fa �9 L[A], so Card L[A] CI (/k 0 + 1) = 

Card y, and apply 4.2 to the universe K[A] (its assumption holds by [Sh420, 5.6]). 

Second assume (*)~ "in K[A] there is a Ramsey cardinal > A when A C :k +" 

and assume our desired conclusion fails. Let S C_ )~ be stationary [~f �9 S =~ cf 5 = 

0+], (a~: a < A), exemplify S e I[A] (exist by [Sh420, w We can find a, g as 

described above. Let (/o: a < A) exemplify A = tcf(1- I a/J), now by [Sh355, 1.3] 

without loss of generality A = maxpcf  a. Let Ao _c A be such that a, (fa: a < ~), 

(ha[a]: a �9 pcf a) are in n[Ao]. Hence in n[A0] for suitable J, (f,,/J: a < A) is 

increasing, and without loss of generality for some ((c~: a e as): 5 �9 S) �9 L[Ao], 
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we have: for 6 �9 S, cf/f = lal +, a~ a club of ~ and (fa I (a\c~): a �9 a6) is 

<-increasing (see [Sh345b, 2.5] ("good point")) and r �9 J and S is stationary 

in V, so the assumption of 4.3 holds in V 1 whenever L[A0] C_ V 1 C_ V; hence for 

A C_ A +, in K[Ao, A] the conclusion of 4.2 holds as we are assuming (,)x. 

Note: if A C_ A, in K[A], A <~ = A hence if a < A +, A C_ a then K[A] 
,,~<~ < (~+)v,,. 

Choose by 

is as above and 

in K [U~<~ A~] 

induction on a < ~+ a set Am C_ [Aa, A(a + 1)) such that: A0 

for a > 0: if (Ax: x E Y/e), J exemplify the conclusion of 4.2 

and (.fi: i < A) exemplify the X = tcf ( l ' I ,ey/e  Ax/J ) ,  without 
% 

loss of generality J canonical (all in K [Uz<~ A~], canonical means: the normal 
I i 

J 

ideal generated by {x: Ax e b<~[{Ay: y E Y/e}]}), then in g [U~<~ A~3] we c a n  

find ] ,  A~<~ ] <J  ()~x: z E Y/e), Ac, ] ~J  fa (as they cannot exemplify the 

conclusion of 4.5 in V - -  otherwise we have finished). 

Let A = U~<:~+ A~. 

Now in K[A] there are e, (Ax: A �9 y/e), Cfi: i < A) (and J)  

exemplifying the conclusion of 4.2 (by (*) and [Sh513, 6.12(3)]). By 4.5 below, 

for some 6 < A +, e, (A~: x �9 y/e), (bo[{A~: x �9 y/e}]: a �9 pcf{A~: x �9 Y/e}), 

]~(a<A) all belongs to K [UT<6AT], and in K [UT<6AT] we get a contradic- 
tion. 

If (*)~ holds for every A we are done. If not, let Ao be minimal such 

that (*)~o fails; so if ~ < ~o the conclusion holds, and if A > ~0 then let A c_ 

A0 + be such that in K[A] there is no Ramsey, hence ([Do J]) for # _> A+ in V, 

coy(#, 0, 0, 2) <_ #, so the assumptions of 4.3 fail. Similarly # > 0, cf(#) = R1, 

PPr(0,~)(#) > A+ bring a contradiction. Ih.s 

4.4 Conclusion: Hypothesis [Sh420, 6.1(C)] in any K[A]. (1) Assume # > c f#  = 

R1, #o < #, a >_ I{A: #o < A < #, A inaccessible}l < #. Then 

a +4 > I{~: # -.: A < pp (#) and A is inaccessible}[. 
r(a,~l) 

(2) The parallel of [Sh400, 4.3]. 

Proof.- See [Sh410, 3.5] and use 4.2(3). 1 

By [DoJe] 
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4.5 THEOREM: IrA is regular (> R1) A C_ A, Z �9 K[A] a bounded subset of A 

then for some a < A, Z �9 U~<~ K[A N a]. 

We shall return to this elsewhere. 

5. D e n s i t i e s  o f  B o x  P r o d u c t s  

5.1 Definition: d<~(A, 0) is the density of the topological space ~0 where the 

topology is generated by the following family of clopen sets: 

{ [ f ] : f � 9  ~ 0 f o r s o m e a C A ,  l a [ < g }  

where 

So 

[I] = {g �9 ~o: g c_ f } .  

d<~(A, 0) = 

Min {IFI: F C_ ~0 and if a e S<~(A) and g �9 ~0 then (3f  �9 F)g C f } .  

If 0 = 2 we may omit it, if ,~ = R0 we may omit it (i.e. d(A,0) = d<~o(A,0)). 

Always we assume A > 1%, ~ > R0,0 > 1 and A + > ~. We write d~(A,0) for 

d<~+ (A, 0). 

5.1A Discussion: Note: for ,~ = R0 this is the Tichonov product, for higher ,~ 

those are called box products and d has obvious monotonicity properties. 

d (2 ~o) = lq0 by the classical Hewitt-Marczewski-Pondiczery theorem [HI, 

[Ma], [P]. This has been generalized by Engelking-Karlowicz [EK] and by Com- 

fort-Negrepontis [CN1], [CN2] to show, for example, that d<~(2 ~, a) = a if and 

only if a = a <~ ([CN1] (Theorem 3.1)). Cater-Erd6s-Galvin [CEG] show that 

every non-degenerate space X satisfies cf(d<~(A,X)) >_ cf(,~) when ~ < A +, 

and they note (in our notation) that "d<~(A) is usually (if not always) equal 

to the well-known upper bound (logA) <~''. It is known (cf. [CEG], [CR]) that 

SCH =~ d<~ I (A) = (log A) ~~ but it is not known whether d<~ (A) = (log A) ~~ is 

a theorem of ZFC. 

The point in those theorems is the upper bound, as, of course, d<~(g, 0) > )C 

if ~ > 2 • & 0 > 2 [why? because if F = {fi: / < X} exemplify d<~(~, 0) _< )~, the 

number of possible sequences (Min{1, fi(r i < X/ (where r < #) is < 2 x, so 
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for some ~ # ~ they are equal and we get contradiction by g, g(() = 0, g(~) = 1, 

Dom g = {r ~}1. 

Also trivial is: for ~ limit, d<~(A, O) = ~ +supo<~ d<o(A, 8), so we only use 

regular; d<~(A, O) >_ a ~ for a < ~. 

Also if cf(A) < ~, A strong limit then d<~(A) > A. The general case (say 

2 <~' < A < 2 ~', c f#  _ 8) is similar; we ignore it in order to make the discussion 

simpler. 

So the main problem is: 

5.2 PROBLEM: Assume A is strong limit singular, A > ~ > cf(A), what is d<~(A)? 

Is it always 2~? Is it always > A + when 2 ~ > A+? 

In [Sh93] this question was raised (later and independently) for model the- 

oretic reasons. I thank Comfort for asking me about it in the Fall of '90. 

5.3 LEMMA: Suppose A is singular strong limit, cf(A) = cf(6*) _< 6" < cf(~) _< 

< A, 2 <_O < A, A < X < 2~ and (As ,#a,Xa,  X~ : a < 6*) issuch that: 

Xa = 0~'~ * , Xa = cov(xa, A~, A., 2), 

d< , (ga ,0)  > A~ (this holds e.g. if(VA' < An)[2 ~' < #a]), 

A,~ = [#,~,#,~ + #,~], 

Ga = {g: 9 a partial function from some a E $<~(Aa) to 0}, 

for g E G,~, 

[g] = {f  �9 X~: g _C f} where X,, =: (A')O, so [X,~[ = X~, 

ha is a function from S<x~ ((A-)O) to Ga such that ha(a) "exemplifies" 

that a is not dense in (A~)O, i.e. [f �9 a & g = ha(a) ~ g~:f]. 

Then ( F ) ~ ( E ) ~ ( D ) o ( C )  ~ ( B ) ~ ( A ) ;  and (E) a decrease with a and (E) ~ ~ ( G )  

when X* = Xa; and i f  every As is regular ( G ) ~ ( F )  and if in addition Aa<~" X* = 

Xa then (G)c~(F)~(E) ,  and if  {a < 6*: a _< Aa} ~ 0 mod J and a < A then 

( E ) ~  (E) ~ (fixing J), where 

(A) 0) > X, 
(B) i f  xr �9 1-Ia<6" Xa for ( < X then there is ~ �9 l Ia<~. Ga such that: for 

every ( < X, {a < 6*: xr r [gr # @; 

(C) i f xr  �9 YIa<6. Xa for ~ < X then for some Wa �9 S<xo(Xa) (a < 6*) for 

every ( < :~, {a < 6": xr �9 Wa} # 0; 
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for every xr �9 I-L<~* xs  for ( < ~ there is if; �9 rL<s .  s<~, (xs)  such that: 

for each ~ < X, Vs<~- xr �9 ws; 

(E)" for some ideal J on 6" extending J ~  for every xr �9 rL<~.  x,~ (for ( < x) 

there are e(.) < a and ~ �9 rL<~.  s < ~ ( x s )  for e < e(,)  such that for 

each ( we have Ve{a < ~*: xr ~ w~} = 0 rood J. 

H a  -- 2 we may omit it; 

(F) for some non-trivial ideal J on 6* extending J ~  we have 

I-I  ($<x~(Xs), C_)/J is x+-directed; 
a < 5  ~ 

(G) for some non-trivial ideal J on 6" extending j~a, for any (Ps: a < 6"), P s  

a As-directed partial order of cardinality <_ X*~, we have: I~s<~. P s / J  is 

)C +-directed. 

5.3A Remark: 

(1) Note that the desired conclusion is 5.2(A). 

(2) The interesting case of 5.3 is when {#s: a < 6*} does not contain a club 

of A. 

(3) Note that with notational changes we can arrange "A is the disjoint union 

of As(a  < 6"), hence A0 = rL<~.  x s " .  

Proo~ Check. Clearly (E) ~ decreases with a, i.e. if ~rl < a2 then (E) ~1 =~ 

(E) ~ 

( E ) ~ ( D ) :  Just for J varying on non-trivial ideals, we have monotonicity in J;  

and for J = {0} we get (D). 

(D)r (C) is a translation of (D). 

(C)=~(B): If x( �9 I-L<6. x ~  for ( < ~, let (ws: a < 6*) be as in (C); for each 

a we know that ws is not a dense subset of Xa (as d<~(#~,0) > As > [wal) so 

there is gs �9 Gs for which [gs] N ws = $, so 9 =: (gs: a < 6*) is as required in 

(B)c*(A):  They say the same (see 5.3A(3)). 

(F)=~(E): Note that  (E) just says that  in I-L<~- ( s < ~ o ( x s ) , c ) ,  any subset of 

{f:  f �9 1-L<~. S<x. (Xa) ,  such that each f ( a )  is a singleton} has a < j -upper  

bounded. In this form it is clearly a specific case of (F). 
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(E) a =~(G) WHEN Xm -~ X~: where {a < 5*: a _< Am} # 0 mod J: Easy too. 

Next assume every Am is regular, J an ideal on 5*. 

(G)=~(F): (F) is a particular case of (G), because (S<~(Xm) C_) is Am-directed 

as Am is regular and S<xo (X~) can be replaced by any cofinal subset and there 

is one of cardinality ~ by its definition. 

The rest should be clear. 15.3 

5.4 CLAIM: Assume A is strong limit, 0 < A0, (Am: a < 5"), (X~: a < 5*) are 

(strictly) increasing with limit A, 5" < ~ <_ cf(A) < A, A < ~ < 2 ~ and )~m <_ X*,, 

Am regular for each a < 5*. Then (G) of 5.3 holds (hence d<~(A, 9) > X) in any 

of  the following cases: 

(a) for some #m strong limit, cf(#~) < a, 2 ~~ = #+, Am -- ~+, XI = ~+ and 

YIm<~. #+ / J is x+-directed, 

(b) k < w and for every a, Xl  <_ A+k and for some ideal J on 5", for s <_ k, 

rI x+~/J is x+-directed, and d<~(X2, O) >__ Xm, 
(c) for some 7 < cf(A) for every a < 5", Xl  <- A+~ and for some ideal J on 5* 

for every ~ < 7, I 'L<~-, A+(~+I)/J is x+-directed, and d<~(Xl,0) _> Am, 

(d) for some ideal J on 5* extending j~d for every regular A~ E [A~, XI] satisfy- 

ing t l imj(cf  A~) = A, we have I]m<s. A~/J  is x+-directed and d<~(Xl, 0) >_ 

An. 

Proof: Clearly (a)=~(b)=~(c)=~(d). 

Now the statements follow from the following observations 5.4A-5.7. 

5.4A Observation: Assume that for a < 5, Pm is a (non-empty) Am-directed 

partial order of cardinality Xm, [5] + < Am = cf(Am) < X~, J an ideal on 5, 8" = 

Min{8: for some A and f:  f = (f~: i < 8), f/ E rim<6 79m is <j+A-increasing, 

A C_ 5, 5 \A ~ J but for no g �9 1-L<~ Pro, Ai<o{a: 7a~ ~ f~(a) <_ g(a)} # 0 mod 

( J  + A)}. Then I]~<~ P , / J  is 0*-directed. 

Proof: Without loss of generality no :Pro has a maximal element. If the conclusion 

of 5.4A fails, let F be a subset of rI~<~ Pa  with no < j -upper  bound, of minimal 

cardinality. Let 0 = IF[, so let F = {fi: i < 0}; by the choice o f F  without loss of 

generality a < B =~ fm <J  f~ hence 0 is necessarily regular. If {a < 5: Am <_ 0} �9 

J we can find an upper bound: g(a) is a Pro-upper bound of {fi(a):  i < 0} when 

Am > 0, and arbitrarily otherwise. So without loss of generality A~ Am _< 0. Now, 

remember [5[ + < Am, and so ]5[ + < 8. By [Sh420, w we can find C = (Ci: i < 0), 
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Ci C i, j E Ci ~ Cj = j ~ Ci, otp(C~) _< [6[ + and S =: {i < A: cf(i) = [6[ +, 6 = 

sup(Ci)} stationary: so wlog j e Ci =~ Am<6Pm ~ ]~(a) < fi(a). Now we 

repeat the proof from [Sh282, 14]; better see [Sh345a, 2.6] or here 6.1.* |5.4A 

5.5 Observation: In 5.4A, if A, ] exemplify 0* = 0 then 

0* > min{ pre (:~, i):  A C 6 and 6 \ A r J} 
J+A 

where 

5.6 Definition: For ideal I on 6 and )~ = (X,~: a < 6), A = (Am: a < 6), 

Am = cf(Am) _< ~(m we let prel(;~,i  ) =: Min{[P[: P is a family of sequences of 

the form (Bin: a < 6), Bm C_ Xm, IBm[ < Am such that for every g E l-L<,  Xm for 

some/3 E P,  {a < 6: g(a) E Bin} # 0 mod I }. 

Proof Check. 

5.6A Remark: We use other parts of 5.3. 

5.7 Observation: Let I be an ideal on 5", Xm _> Am > 5". 

(1) Define ,711] = {I + A: A C_ 6, 6\A ~ I}. 
(2) IfI1 C_/2, A1 _> A2, X1 _< X2 for a < 6 then prell (:~I,A1) _< prei2(~:2,A2). 

(3) If 5" is the disjoint union of A1, A2, A, ~ I and I, =: I + A, then 

prei(~:, A) = Min {prell (:~, A), prel2 (~, A) }. 

(4) prei(:~ +, A) _< prei(~, ~) + sup{tcf(l l  X+/I + A): A C_ 6, 6\A ~t I}.** 

Moreover prei(:~ +, A) _< Min{pre1+a()2, A) + t c f ( [L< , x+~/(I + A)): A c_ 

~, 5 \ A r I (and the tcf is well defined)}. 

(5) If each Xm is a limit cardinal, cf~(m > 6", then supjej[i ]preJ(:~,A) = 

sup~,<~ supaej[/l  prej(~ ' ,  A) + sup je j [ l  I tcf(H:~m/I). 

(6) 2 I~'1 + supje,7[l] sup{tcf(IIm<~X~/J): Am < :~'m = cf(x~) _< ~:m and the 

true cofinality is well defined} < 21"1 + supjey[i]prej( :~,~ ) < 21~'1 + 

supdej[l] sup{tcf(IIm<6X~/J): 16"] < cf(x~) and Am < X~ -< Xm}. 

In part (6), if I is a precipitous ideal then the first inequality is equality. (7) 

Proof  Straightforward. 

* In the main case here, A~ 216"1 < A~ and then trying all the possible A's, using 
their g's, the proof is very simple. 

** Of course, ~+ = (x~+: ~ < 5). 
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5.9 Observation: In several of the models of set theory in which we know "A 

strong, singular, limit, 2 ~ > A +" our sufficient conditions for dr 2) = 2 ~ 

usually hold by the sufficient condition 5.4(a) (simplest: if GCH holds below A, 

cf A = Ro). 

Remark: We could prove this consistency by looking more at the consistency 

proofs, adding many Cohen subsets to A in preliminary forcing; but the present 

way looks more informative.** 

6 .  O d d s  a n d  E n d s  

6.1 LEMMA: Suppose cf(6) > ~+, I an ideal on ~, f~ E ~Ord for a < 6 is 

<_1-increasing. Then there are J~, ~, f~(a  < 6) such that: 

(A) $ = (si: i < ~), each si a set of  <_ ~ ordinals, 

(B) fo(i) < #, 

(C) f'~ �9 1-Ii<~ si is defined by f ' ( i )  = Min[s,\f~(i)], 

(D) cf[f~(i)] _< ~; (e.g. f~(i) is a successor ordinal) implies f~(i) = f~(i) ,  

such that: 

(E) J~ is an ideal on t~ extending I (for a < A), decreasing with a (in fact for 

some a~,~ C_ ~ (for a < ~ < ~), a~,~/I decreases with 8, increases with 

a and J~ is the ideal generated by I U {a~,~: a < ~ < A}) so possibly 

J~ = P(a)  and possibly J~ = I, 

(F) i f  D is an ultrafilter on t~ disjoint to J~ then f ' / D  is a <D-l.u.b of 

(f~/O:/~ < 6) and {i < ir cf[f~(i))] > ~} �9 D, 

(G) if  D is an ultrafilter on ~ disjoint to I but for every a not disjoint to J~ 

then ~ exemplifies (f~: a < 6) is chaotic for D, i.e. for some club E of 6, 

B< 7�9 f: (_D f~ <D A, 
(H) ifcf(6) > 2" then (f,~: a < 6) has a <1-l.u.b. and even <i-e.u.b, 

(I) if  b~ =: {i: f "  (i) has cofinality <_ ~ (e.g. is a successor)} qL J,~ then: for 

every B �9 (a, 6) we have f'~ r b~ = f~ r b~ mod J~. 

Moreover 

(F) + / f t r  r J~ then f'a is an <so-e.u.b (= exact upper bound) of(f~: B < 6). 

Proof'. Let S = {j: j <_ supU,~<~Rang(fa ) has cofinality _< ~}, e = (e3: j �9 S) 

be such that  [j = i + 1 =~ ej = {i}], [j limit &j'  �9 S N ej =~ ej, _C ej], ej C_ j 

[j limit =} j  = supej] and [ejl _< ~. 

** See much more on independence in a paper of Gitik and Shelah. 
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For a set a _C sup U ~ < , R a n g  (f~) let E[a] = a u U j e , n s  ej hence e[e[a]] = e[a] 

and [a C_ b =~ g[a] C_ e[b]] and le[a]l < lal + ~. We t ry  to choose by induction on 

< ~+, the following: he,  De, g(, g( = (s(,~: i < ~), (f(,~: (~ < 5) such that:  

(a) gr �9 *Ord, 

(b) sr = e [{g~(i): e < (} U {sup~<~ f~(i)  + 1}] so it is a set of  < ~ ordinals, 

increasing with (,  sups<6 f~(i) + 1 �9 s;,i, 
(c) f ; ,~ e *Ord, fr = Min[sr 
(d) D< is an ultrafilter on ~ disjoint to I ,  

(e) for a < 5, f a  --~Dr gr 

(f) er  is an ordinal < 6, 

If we succeed, let a ( . )  = supr ar so as cf(6) > n + clearly a ( . )  < 5. 

Now let i < ~ and look at (fr ff < n+); by its definition (see (c)), fr 

is the minimal member  of the set sC,i\fa(.)(i ). This set increases with ~, so 

fr decreases with ff ( though not necessarily strictly),  hence is eventually 

constant;  so for some ffi < ~+ we have ff �9 [r tr +) =~ fr = fr Let 

r = sup i< ,  (i, so ((*)  < a+,  hence 

(*) r �9 [r = fr 
i 

We know that  fa( .)  --<De(. ) g((.) <De(. ) fr hence for some i, fa(.)(i) <_ 
g;(.)(i) < fr  but  gr �9 sr hence fr  _< gr < 

fr  contradicting the choice of ~(*). 

So necessarily for some ~ < g+ we are stuck, and clearly sr < a), 
fr  < ,k) are well defined. 

Let si =: s;,i (for i < ~) and f~ = f~,~ (for a < A). Clearly si is a set of 

<_ tr ordinals; now clearly: 

(*)1 f,~ _~ J~ 

- < Z f" 5 ,  
(*)3 if b = {i: f~(a)  < f~(i)} r I ,  c~ < f~ < 6 then f~ I b < I  f# I b. 

We let for a < 6 

= { b C ~ : b � 9  and for some/~ we have: a < / ~ < 6  and J .  

f :  r ( t c \ b ) = i f ~  I ( t c \ b ) } .  

We let for a < f~ < if, aa,a =: {i < to: f'~(i) < f~(i)}.  Then 
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(*)a Jo is an ideal on ~ extending I, in fact is the ideal generated by ItJ{ao,a:/3 E 

As (f~: c~ < 6) is <_t-increasing (i.e. (*)1): 

(*)5 J~ decreases with a, in fact a,~,a/I increases with/3, decreases with a,  

(*)6 if D is an ultrafilter on a disjoint to J~, then f~ /D  is a <o-lub of 

{f~/D: /3 < 6}. 
[Why? We know that /3 e (a, 6) =~ a~,~3 = 0 mod D, so fa <- f~ =D f~ for 

/3 E (a, 6), so f~ /D  is an <D-upper bound. If it is not a least upper bound then 

for some g E ~Ord, Aa fa  <_D g <D f~ and we can get a contradiction to the 

choice of ~, $, f~ as: (D, g) could serve as Dr de.] 

(*)7 If D is an ultrafilter on Ir disjoint to I but not to J ,  (for every a < A) 

then ~ exemplifies (f~: a < 6) is chaotic for D. 

[Why? For every a < 6 for some /3 E (a, 6) we have a~,~ E D, i.e. 

{i < ~r f~(i) < f~(i)} E D, so (.f~/D: a < 6) is not eventually constant, so 

if a </3, f~ <D .f~ then f~ <D f~ (by (*)3) and fa --<D ]~ (by (c)) as required.] 

(*)s if ~: r J,~ then f~ is an _<j -e.u.b. of (f~:/3 < 6). 

[Why? By (*)6, f~ is a _<jo-upper bound of (f~:/3 < 6); so assume that 

it is not a <_jo-e.u.b. of (.fa:/3 < 6), hence there is a function g with domain ~, 

such that g(i) < Max{l, f~(i)}, but for no/3 < 6 do we have 

C a =: {i < ~: g(i) < Max{l, fa(i)} = tr mod J~. 

Clearly (Ca: /3 < 6) is increasing modulo J~ so there is an ultrafilter D on 

disjoint to J~ U {Ca:/3 < 6}. So fa <_D g --<D f~, so we get a contradiction to 

(*)6 except when g =D f~ and then f~ ----D 0,~ (as g(i) < 1 V g(i) < L( i ) ) .  If 

we can demand b* = {i: f~(i) = 0} ~ D we are done, but easily b* \ C a E J~ so 

we finish.] 

(*)9 If cf[f~(i)] _< ~ then f~(i) = fo(i). 
[Why? By the definition of sr = e[...] and the choice of e, and f~(i).] 

(*)1o Clause (I) of the conclusion holds. 

[Why? As f~ <jo f# < j ,  f~ and f~ r b = j .  f~ r b by (*)a.] 

The reader can check the rest. Ih.1 

6.1A Example: We show that  1.u.b and e.u.b are not the same. Let I be an 

ideal on ~, sr + < A = cf(A), ~ = (an: a < A) be a sequence of subsets of tr 

(strictly) increasing modulo I, ~\a~ • I but there is no b e P ( ~ ) \ I  such that  
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/ ~  b n as  6 I.  [Does this occur? E.g. for I = S<u o (w), the existence of such ~ is 

known to be consistent; e.g. MA &~ = No & A = 2 ~~ Moreover, for any ~ and 

~+ < A = cfA < 2 ~ we can find am C_ ~ for a < A such that,  e.g., any Boolean 

combination of the a~'s has cardinality ~ (less needed). Let I0 be the ideal on 

generated by 8<~(~) O {a,,\a~: a < /3  < A}, and let I be maximal in {J: J an 

ideal on ~, Io C_ J and [a </~ < A => no\a,, q~ J]}. So if G.C.H. fails, we have 

examples.] For ct < A, we let f~: ~ --+ Ord be: 

]~(i) = { a  i f a 6  ~ \ a i ,  
A + a  if a 6 ai. 

Now the constant function f 6 ~Ord, f ( i )  = A + A is a 1.u.b of {fo: & < A) 

but not an e.u.b. (both rood J)  (not e.u.b, is exemplified by g 6 ~Ord which is 

constantly A). 

6.2 CLAIM: Supposep > ~ = cfp,  # = t l imj Ai, 6 < #, Ai = cf(Ai) > 6 fori < 6, 

J a a-complete idea1 on 6 and A = tcf (I'L<~ Ai / : ) ,  and (f,,: a < A) exemplifies 

this. 

Then we have 

(*) if  (u~: /3 < A) is a sequence of pairwise disjoint non-empty subsets of A, 

each of cardinality <_ a (not < a!) and a* < #, then we can find B C_ A 

such that: 

(a) otp(B) = a*, 

(b) if/3 E B, 7 6 B and/~ < 7 then supu~ < minus,  

(c) we can find sr E J for r E U~eBUl such that: i f  r E U~eBU~, 
6 U~eB u~, ( < ~ and i 6 6\sr then fr < f~(i). 

Proof: For each regular 0, 0 + < #, there is a stationary So C_ {6 < A: cf(6) = 

0 < 6} which is in I[A] (see [Sh420, 1.5]) which is equivalent (see [Sh420, 1.2(1)]) 

to: 

( , )  there is ~,o = (cO: i < A), 

(a) C~ ~ a subset of a,  with no accumulation points (in C~~ 

�9 nacc(C ) = n 

(7) for some club E ~ of A, 

[6 �9 So C~ E ~ ~ cf(6) = 0 < 6 & 6 = supC ~ & otp(C~) = 0]. 

Without loss of generality So C_ Eg, and Aa<$ otp(C~ -< 0. By [Sh365, 2.3, 

Def. 1.3] for some club Eo of A, (g~(C o, Eo): a �9 So) guess clubs (i.e. for every 
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club E C_ Eo of A, for stationarily many ~ e So, gg(C~, Eo) C E) (remember 

gg(C~ = {sup(7 Cl Eo): 3' E C~ > Min(E0)}). Let C ~ = {3' e cO: 3' = 

Min(C~ sup(7 n Eo)}, they have all the properties of the C~ and guess clubs in 

a weak sense: for every club E of ,~ for some a E So N E, if 3'1 < 3'2 are successive 

members of E then 1(3'1, 3'2] N C~ < 1; moreover, the function 3' ~ sup(E f7 3') 

is one to one on C~'*. 

Now we define by induction on ~ < A, an ordinal ~r and functions go ~ �9 

1-Ii<~ )q (for each/9 �9 O =: {/9:/9 </~,/9 regular uncountable}). 

For given ~, let ar < ~ be minimal such that: 

~<~&/9�9162 mod J. 

Now ar exists as (f~: a < A) is <j-increasing cofinal in 1-Ii<x,/J. Now for each 

/9 �9 O we define go ~ as follows: 

for i < 8", g~o(i) is sup [{go~(i) + 1: r �9 C~} O {f,,,(i) + 1}] if this number 

is < ,~i, and f~c (i) otherwise. 

Having made the definition we prove the assertion. We are given 

(ua: /3 < ,~), a sequence of pairwise disjoint non-empty subsets of ,~, each of 

cardinality < a and a* </z. We should find B as promised; let/9 =: (1~*1 + 181) + 
so/9 < /~ is regular > 181. Let E = {8 �9 Eo : for every if: [ff < 8 *~ supur < 

8 r ur C_ 8 r162 ar < 8]}. Choose a �9 So f) acc(E) such that gt(C~, Eo) C_ E; 

hence letting C ~ = {3'i: i </9} (increasing) we know/\i(3'i,3'i+1) N E ~ 0. Now 
o 1 B = {3'5~+3: i < ~*} are as required. For a �9 I.Jr u5~+3 let s~ = s~ t3 s~. 

For a �9 u5r ff < a*, let s ~ = {i < & g5r < f,~(i) < g5r for each 

< a*; let (a~: e < lu5r enumerate u5r and 

sla. ={ i :  for every ~ < e, fa,(i) < fa,(i) e* a~ < ~ e* f~ ( i )  < 16.2 

6.2A Remark: In 6.2: (1) We can avoid guessing clubs. 

(2) Assume a < 0t < 02 < tt are regular and there is S C_ {6 < A: cf(6) = 

81} from I[A] such that  for every r < A (or at least a club) of cofinality/92, S N 

is stationary and (]a: a < A) obey suitable ~,0 (see [Sh345a, w Then for some 

A C_ A unbounded, for every (us:/3 < 82) sequence of pairwise disjoint non-empty 

subsets of A, each of cardinality < a with [minu~,supu~] pairwise disjoint we 

have: for every Be C_ A of order type/92, for some B C B0, ]B I = 01, (c) of (.)  of 

6.2 holds. 
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(3) In (*) of 6.2, "a* < /s can be replaced by "a* < #+" (prove by 

induction on a*). 

6.3 OBSERVATION: Assume A < A <~,/~ -- Min{#: 2 ~' > A}. Then there are 6, X 

and T ,  satisfying the condition ( , )  below for X = 2~' or a t / eas t  arbitrarily large 

regular X <- 2~'. 

( , )  T a tree with ~ levels, (where 6 <_ t~) with a set X of >_ X 5-branches, and 

for a < 6, U <o I:r l < 

Proo f  o f  Observation: So let :~ < 2,  be regular, :~ > ,~. 

CASE 1 : A ~ < ~ 2  I~1 < A. Then:/" = ~'>2, T~ = ~2areO.K.  ( theset  ofbranches 

~2 has cardinality 2"). 

CASE 2: Not Case 1. So for some 0 < #, 2 o _> A, but by the choice of #, 20 _< A, 

so 2 0 = A, O < # and so O _< a < # =~ 2 I'll = 2 ~ Note 1,>21 = x as ~ ___ x. 

SUBCASE 2A: cf(A) ~ cf(#). Let ~'>2 = Uy<x By, By increasing with j ,  [Bj[ < 

A. For each 71 �9 ~'2, (as cf(A) ~ cf(/~)) for some j ,  < A, 

= sup{< < r< �9 S j , } .  

So as cf(x) > #, for some ordinal j* < A we have 

{~/�9 ~2: j ,  <_ j*} has cardinality _> X- 

As cf(A) ~ cf(#) and # < A (by its definition) clearly # < A, hence IBj. I x # < A. 

Let 

T = {~? I e: e < /g(~)  and T/�9 B j . } .  

It is as required. 

SUBCASE 2B: Not 2A soc f (A)  = cf(#). As (Va)[0 < a < # =r A = 2 ~ =~ 

cf(A) = cf(2 ~ > a], clearly cf(A) > # so # is regular. If A = # we get A = A <x 

contradicting an assumption. 

So A > #, so A singular. So i f a  < #, # < ai = cf(ai) < A for i < a then (see 

[Sh-g, 345a, 1.3(10)]) maxpcf{oi: i < a} _< r I i< ,  ai <_ I I"l _< (2~ I"l < 2 <" = A, 

but as A is singular and maxpcf{ai:  i < a} is regular (see [Sh345a, 1.9]), clearly 

the inequality is strict, i.e. maxpcf{ai:  i < a} < A. So let (ai! i < #) be a strictly 

increasing sequence of regulars in (~, A) with limit A, and by [Sh355, 3.4] there 
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is T c_C_ yL<,a~,  [{v [ i: v �9 T}I < maxpcf{Aj: j < i} < A, and number of p- 

branches > A. In fact we can get any regular cardinal in (A, pp+(A)) in the same 

way. Let A* = min{A': # < A' < A, cf(A') = p and pp(A') > A}, so (by [Sh355, 

2.3]), also A* has those properties and pp(A*) _ pp(A). So if pp+(A*) = (2") + 

or pp(A*) = 2" is singular, we are done. SO assume this fails. 

I f p  > Ro, then (as in 3.4) a < 2" =~ cov(a, p+, p+, p) < 2" and we can 

finish as in subcase 2A (as in 3.4; actually coy(2 <", p+, p+, p) < 2" suffices which 

holds by the previous sentence and [Sh355, 5.4]). If # = Ro all is easy. L a 

6.4 CLAIM: Assume bk C_ bk+l C_ . . .  for k < w, a = (Jk<~ bk (and la[ < Min a) 

and A �9 pcf a \  [.Jk<~ pcf(bk). 

(1) Then we can find finite ~)k C_ pcf(bk\bk-1) (stipulating b-1 = 0) such that 

A �9 pcf [.Jk<~ ~k. 

(2) Moreover, we can demand Ok C_ (pcf bk)\(pcf(bk-1)).  

Proo~ We start to repeat the proof of [Sh371, 1.5] for ~ = ~v. But there we 

apply [Sh371, 1.4] to (b~: ~ < to) and get ((c;,e: ~ _< nr ~ < ~r and let A;,e = 

maxpcf(cr Here we apply the same claim ([Sh371, 1.4]) to (bk\bk-l :  k < w) 

to get part (1). As for part (2), in the proof of [Sh371, 1.5] we let ~f = [a[ + + R2 

choose (Ni: i < ~f), but now we have to adapt the proof of [Sh371, 1.4] (applied 

to a, (bk: k < w), (Ni: i < /5)); we have gotten there, toward the end, a < 

such that E~ C_ E. Let E~ = {ik: k < w}, ik < ik+l. But now instead of 

applying [Sh371, 1.3] to each be separately, we try to choose (cr ~ <_ n(r by 

induction on ~ < w. For r = 0 we apply [Sh371, 1.3]. For ( > 0, we apply 

[Sh371, 1.3] to be but there defining by induction on ~ r = r C_ a such that 

max (pcf(a \c ; ,o \ . - .  \cr N pcf be) is strictly decreasing with l. We use: 

6.4A Observation: If la~l < Min(a~) for i < i*, then c = Ni<i* pcf(a~) has a last 

element or is empty. 

Proof: Wlog (la~[: i < i*( is nondecreasing. By [Sh345b, 1.12] 

(*)1 c__ c & < Min~ =~ pcf(~) C_ r 

By [Sh3 l, 2.6] 

if A E pcf(~), ~ C_ pcf(c), 101 < Min(~) then 

for some e C ~ we have lel _< Min lao[, A �9 pcf(e). 



Vol. 95, 1996 FURTHER CARDINAL ARITHMETIC 97 

Now choose by induction on ( < [ao[ +, 0r �9 c, satisfying 0; > maxpcf{0~: e < (}. 

If we are stuck in ~, maxpcf{0~: e < ~} is the desired maximum by (*)1. If we 

succeed 0 = maxpcf{0~: e < [ao[ +} is in pcf{0~: e < (} for some ( < [ao[ + by 

(*)2; easy contradiction. ~6.4A 

116.4 

6.5 Conclusion: Assume Ro = cf(#) _< ~ _< Po < #, [P' �9 (Po, #) & cf(/~') < ~; 

pp,,(p') < A] and pp+(#) > A = cf(A) > /~. Then we can find An for n < w, 

#o < A,, < A~+I < p, # = ~,,<~ A,, and A = tcfri,~<~ A~/J  for some ideal d on 

~; (extending J ~ ) .  

Proo~ Let a C_ (p,#)  N Reg, [a[ _< ~, A �9 pcf(a). Without loss of gener- 

ality A = maxpcfa ,  let p = O,~<~/~ ~ /Zo _< /z ~ < p~ < p, let pin = 

po + sup{pp~(#'): go < #' _< po and cf(#') _< ~}, by [Sh355, 2.3] #~ < p, 

#~ = P~ +sup{PP~(P'):  #o < #' < #~ and cf(#') _< ~} and obviously #~ -< P~+1,1. 
1 by replacing by a subsequence without loss of generality p l  < P,~+l. Now let 

b~ = a A #~ and apply the previous claim: to bk =: a N (p~)+, note: 

maxpcf(bk) _< #~ < Min(bk+l\bk). 116.5 

6.6 CLAIM: 

(I) Assume Ro < cf(]~) = ,r < #o < #, 2" < # and [#o _< #' < # & cf(#') _< 

,r ~ pp,r p' < #]. I f p  < A = cf(A) < pp+(p) then there is a tree 7" with ,r 

levels, each level of cardinality < #, T has exactly A R-branches. 

(2) Suppose (Ai: i < ~) is a strictly increasing sequence of regular cardinals, 

2 ~ < Ao, a =: {Ai: i < ~}, A = maxpcfa ,  Aj > maxpcf{Ai: i < j} for 

each j < ~ (or at /east  ~-~i<~ Ai > maxpcf{Ai: i < j ) )  and a ~ J where 

J = {b C_ a: b is the union of countably many members of J<~[a]} (so 

J 2 J f f ,  cf ~ > Ro). Then the conclusion of (1) holds with # = ~ i < ~  Ai. 

Proo~ (1) By (2) and [Sh371, w (or can use the conclusion of [Sh-g, AG 5.7]). 

(2) For each b C_ a define the function gb: ~ ~ Reg by 

gb(i) = maxpcf[b N {Aj: j < i}]. 

Clearly [bl C_ b2 :=~ gbl -< gb2]. As cf(~) > Ro, J Rl-complete, there is b C_ a, 

b ~ J such that: 

r _C b&r  r J => -~gc < s  gb- 
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Let A~ = maxpc f (bn{Aj :  j < i}). For each i let bi = b n { A j :  j < i} and 

{{f~,o: ~ < A/: A e pcf b / be as in [Sh371, w Let 

T~ {Max b pcf(bi), <Ae, n < w } .  -- f~t,c~t I bi: Ae E ae 
t ~ l , n  

Let T / =  {f  G TO: for every j < i, f r bj G Tj ~ moreover for some f~ E 1-Ij<~ Aj, 

for every j ,  f '  r J E Ti ~ and f c_ f '} ,  and T = Ui<~ Ti, clearly it is a tree, Ti its 

ith level (or empty), I~1 _ A T. By [Sh371, 1.3, 1.4] for every g E I-I b for some 

f E I'I b, Ai<~ f r b, E Ti e hence /~i<~ f r bi E 7-i. So I~1 -- ,x~, and 7" has 
> A K-branches. By the observation below we can finish (apply it essentially to 

F = { r / :  for s o m e f E l - I b f o r i < n w e h a v e r / ( i ) = f  [ b ~ a n d f o r e v e r y i < n ,  

f r bi E Ti~ then find A C_ n, n \ A  E J and g* E I-Ii<~(Ai + 1) such that 

Y' =: {f  E F: f r A < g* I A} has cardinality A and then the tree will be 7"' 

where T i' =: {f  I hi: f �9 Y ' }  and 7" = Ui<~ Ti'- (So actually this proves that 

if we have such a tree with > 0 (cf(0) > 2 ~) K-branches then there is one with 

exactly/9 g-branches.) 

6.6A OBSERVATION: (1) I f  F C_ 1-Ii<~/~i, J an Rl-complete ideal on n, and 

[f r g �9 F =~ f ~ j  g] and IFI > 0, cf0 > 2 ~, then for some g* �9 IL<,c(Ai -1- 1) 

we have: 

(a) Y = {f �9 F: f < j  g*} has cardinality O, 

(b) for f '  < j  g*, we have I{Y �9 F: f _<~ Y'}l < 0, 
(c) there* aref~  �9 Y fora < Osuch that: f~ < j  g*, [a </3 < 0 =~ -~fa <g f~]. 

Proof'. Let Z =: {g: g �9 I-L<~(Ai + 1) and Yg =: {f  �9 F: f < j  g} has cardinal- 

ity > 0 }. Clearly (A~: i < g) �9 Z so there is g* �9 Z such that: [g' �9 Z ~ -~g' < j  

g*]; so (b) holds. Let Y = {f  �9 F: f < j  g*}, easily Y C_ Yg" and 1II9" \ Y[ < 2~ 

hence IYI _> 0, atso clearly [fl ~ f2 �9 F & fl  <J  f2 =~ f~ <J  f~]; if (a) fails, 

necessarily (by (b)) IYI > 0. For each f �9 Y let Yf = {h �9 Y: h <D f} ,  SO 

IYsl < 0 hence by the Hajnal free subset theorem for some Z' C_ Z, IZ' l  = ,x+, 

and f l  ~ f2 �9 Z' ~ f l  ~ YS~ so If1 r f2 �9 Z' =~ -~fl <J  f2]- But there is no 

such Z' of cardinality > 2 ~ ([Shll l ,  2.2, p. 264]) so (a) holds. As for (c): choose 

f~ �9 F by induction on a, such that fo �9 Y \ Ua<~ Ys~; it exists by cardinality 

considerations and {f~: a < 0) is as required (in (c)). 1~.6A 

* Or strightening clause (i) see the proof of 6.6B 
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6.6B OBSERVATION: Let Ir < h be regular uncountable, 2 ~ < #i < h (for i < ~), 

#i increasing in i. The s are equivalent: 

(A) there is F C_ ~h such that: 

(i) IFI = h, 

(ii) [{f [i: f �9 f } l  < #i, 

(iii) [ f ~ g � 9  

(B) there be a sequence (hi: i < ~;) such that: 

(i) 2 ~ < hi = cf(hi) _< #i, 

(ii) maxpcf{hi:  i < ~} = h, 

(iii) for j < g, pj >_ maxpcf{hi: i < j};  

(C) there is an increasing sequence (ai: i < ~) such that h �9 pcfUi<~ al, 

pcfai  c_ pi (so Min(Ui< ~ o~) > [Ui<~ a~[). 

Proof'. 

(B)=~(A): 

(A)=~(B): 

By [Sh355, 3.4]. 

If (V0)[9 _> 2 ~ =~ 0 ~ < 0+] we can directly prove (B) if for a club 

of i < ~, Pi > Uj<i  #J, and contradict (A) if this fails. Otherwise every normal 

filter D on ~ is nice (see [$h386, w Let f exemplify (A). 

L e t K = { ( D , g ) : D  a n o r m a l f i l t e r o n ~ , g � 9  ~ ( h + l ) , h = [ { f � 9  

g}l }- Clearly K is not empty (let g be constantly h) so by [Sh386] we can find 

(D, g) �9 K such that: 

(*)1 if A C ~, A ~ 0 m o d D ,  gl <O+A g then h > I{f �9 F:  f <D+A gl}l. 

Let F* = {f  �9 F: f <D g}, so (as in the proof of 6.6) IF*] = h. 

We claim: 

(*)2 if h �9 F* then {f  �9 F*: -~h ~D f}  has cardinality < h. 

[Why? Otherwise for some h �9 F*, F '  =: { f  �9 F*: -~h --<D f}  has cardinality 

h, for A C_ ~ l e t  F~ = {f  �9 F*: f r A  < h r A} s o F '  = U { F ~ : A C  ~ , A r  0 

mod D}, hence for some A C_ ~, A ~t 0 mod D and ]F~] = h; now (D + A,h) 

coatradicts (*)1]. 

By (*)2 we can choose by induction on a < h, a function f~ E F* such 

that A~<~ ]Z <D f~- By [Sh355, 1.2A(3)] (fa: a < A) has an e.u.b, f*. Let 

hi = cf(f*(i)) ,  clearly {i < ~: hi _< 2 ~ } = 0 rood D, so without loss of generality 

Ai<~ cf(f*(i))  > 2 ~ so hi is regular �9 (2 ~, h], and h = tcf (1-L<~ A J D ) .  Let 

Ji = {A C_ i: maxpcf{hj :  j < i} < pi}; so (remembering (ii) of (A)) we can find 

hi �9 1-Ii<i f*( i )  such that: 
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(*)3 if {j: j < i} ~ Ji, then for every f E F,  f r i < j ,  hi. 

Let h e I-Ii<~ f*(i)  be defined by: h(i) = sup{hi(i):  j E (i, ~) and {j: j < 

i} r Ji }. As / \ ic f [ f*( i ) ]  > 2 ~, clearly h < f* hence by the choice o f f *  for some 

a(*) < A we have: h <D fa(.) and let A =: {i < ~: h(i) < f~(.)}, so A E D. 

Define A~ as follows: A~ is Ai if i E A, and is (2~) + if i E ~\A. Now (A~: i < ~) is 

as required in (B). 

(B) =~ (C): Straightforward. 

( C ) ~ ( B ) :  By [Sh371, w B6.6B 

6.6C CLAIM: I f F  C_ ~Ord, 2 ~ < 0 = cf(0) _< IF[ then we can find g* e ~Ord 

and a proper ideal I on ~ and A C_ ~, A 6 I such that: 

(a) rxi<~ g . ( i ) / I  has true cofinality O, and for each i E ~ \ A we have 

cfW(i)] > 2 

(b) for everyg E ~Ord satisfyingg r A = g* r A, g t (~\A) < g* [ (~\A)  we can 

End f �9 F such that: ] [ A = g* r A, g ~ (~\A)  < f r (~\A)  < g* ~ (~\A).  

Proof: As in [Sh410, 3.7 proof of (A)~(B)] .  (In short let f~ �9 F for a < 0 

be distinct, X large enough, (Ni: i < (2~) +) as there, ~i =: sup(0 n Ni), gi �9 

~Ord, gi(l) =: Min[Y n Ord\f6, ( ( ) ] ,  A C s and S C_ {i < (2~)+: cf(i) = ~+} 

stationary, [i �9 S =~ gl -- g'l ,  [r < a & i  �9 S =~ [f~,(r = g*(~) -_- r �9 A]] and for 

some i(*) < (2~) +, g* �9 Ni(.), so [r �9 ~ \ A =~ cfg*(;)  > 2~].) ~.6o 

6.6D CLAIM: Suppose D / s  a kilter on 0 = cf(0), a-complete, 0 > [al ~ for a < a, 

and for each a < O, ~ = (j3~: e < ~) /s a sequence of ordinals. Then for every 

X C_ O, X r 0 rood D there/s  (j3~: e < ~) (a sequence of  ordinals) and w C 

such that: 

(a) e �9 a _< c f (Z; )  _< 0, 

(b) i fB '  _< B~* and [e �9 w - ~' = ~ ] ,  then {a �9 X: for every e < ~ we have 

< < and �9 w - = } # 0 rood D .  

Prool~ Essentially by the same proof as 6.6C (replacing ~i by Min{a �9 X: for 

every Y �9 Ni n D we have a �9 Y}). See more [Sh513, w ~.SD 

6.617, Remark: We can rephrase the conclusion as: 

(a) B = : { a � 9  i f ~ � 9  i f � 9 1 4 9  

but  > sup{/~: ~ < e , /~  < B~*}} is ~ 0 modD.  

(b) I f s  < & for �9 �9 ~ \ w  then {a �9 B: i f � 9  �9 ~ \ w  t h e n / ~  > /~} 

0 rood D. 
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(c) e etr  x. w =~ cf(j3rc) is < 8 but _ a. 

6.6F Remark: (1) If lal < min(a), F c_ Ha, IF I  - -  8 = c f 8  r pcf(a) and even 

8 > a = sup(8 + n p c f ( a ) )  then for some g �9 Ha, the set {f  �9 F: f < g} 

is unbounded in 8 (or use a a-complete D as in 6.6E). (This is as Ha/J<o[a] 

is m i n ( p c f ( a ) \  8)-directed as the ideal J<o[a] is generated by <_ a sets; this is 

discussed in [Sh513, w 

6.6G Remark: It is useful to note tha t  6.6D is useful to use [Sh462, w 5.14]: 

e.g. for if n < w, Oo < Ox < -.- < On, satisfying (*) below, for any ~3~ < /3~ 

satisfying [e �9 w - ~r( < ~ ]  we can find a < 7 in X such that:  

iew--ZT= ;, 

{e,r C_ ~ \ w  & { c f ( f ~ ) , c f ( ~ ) }  C_ [8,,8,+1)) & l even =~ B~ < j3~ r, 

{e,(} C_ a \ w  & { c f ( f ~ ) , c f ( ~ ) }  C_ [8,,8,+1) & l odd =~ ~ < f ~  

where 

( . )  (a) e E t c \ w  =~ cf(~*) E [80,8n), and 

(b) maxpcf[{cf(~*):  e E ~ \ w} O 8t] _< 8t (which holds if O, = a +, a~ = at 

for l E { 1 , . . . , n } ) .  

6.7 CLAIM: For any a, [a[ < Min(a), we can find b = (b~: A E a) such that: 

(a) 6 is a generating sequence, i.e. 

(t3) b is smooth, i.e. for 8 < A in a, 

8 E bx =~ be c_ bx, 

('1) b is closed, i.e. for A E pcf(a) we have b~ = aN pcf(bx). 

Proof: Let (b0[a]: 8 E pefa)  be as in [Sh371, 2.6]. For A E a, let fa,~ = 

(f~*'x: a < a) be a <jx[a]-increasing cofinal sequence of members of I'I a, satisfy- 

ing: 

(*)1 i f~  < A, [a[ < cf(6) < M i n a  and 0 E a then: 

"f~'x(8) = Min l U Y*~'~(8): C a club ~ 
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[exists by [Sh345a, Def. 3.3(2) 5 + Fact 3.4(1)]]. 

Let X - "~,(supa) +, [a[ < g = c fx  < Mina (without loss of generality 

there is such ~) and ~r = (N/: i < a) be an increasing continuous sequence of 

elementary submodels of (H(x) ,  E, <x), Ni n ~ an ordinal, N r (i + 1) E Ni+l, 

[IN/[I < ~, and a, (f*,A: A E a) belong to No. Let N~ = Ui<~ Ni. For every 

A E a, for some club Ex of ~, 
a,x ca,x (0 ~ ( ,)  o �9 a ~ ~up(N~nX)(O) = U ~ e ~  , . .p(N.nX),  ," 

Let E = Axe,  Ex, so E is a club of ~. For any i < j < ~ let 

�9 = { r  t0a'l. b~ 'j 0 �9 a: sup(Ni n O) < ,,~p(NjnX)~ , J"  

As in the proof of [Sh371, 1.3], possibly shrinking E, we have: 

(*)2 for i < j from* E and )~ �9 a, we have: 

(a) J<x[a] = J<x[a] + b~ 3 (hence b~ ~ = bx[a] mod J<x[a]), 

(~) b~ ,j c_ a+ n a, 

(7) (b~': ~ �9 a) E Nj+I,  

(6) f,~x I b~ j = ((0, sup(N~ n 0)): 0 �9 b~J), 

(e) f:u;(N,,n.X) <-- ((0, sup(gg n 0)): 0 �9 a). 
[~ i,j,~ We now define by induction on �9 < In[ +, for A �9 a (and i < j < ~), the set ~x : 

b J~ = bi,  

[ji,j,,+l = b~j,r g U  (b~,j,e: 0 �9 b~ j ' '  } U (0 �9 a: 0 �9 pcfb ' ' j ' '  } 3 

r b~; ;'r lal + limit. x = U f o r e <  
r 

Clearly for A �9 a, (b~z": e < ]al +) belongs to Nj+I and is a non-decreasing 

sequence of subsets of a, hence for some e(i, j, A) < lal +, 

lot +) = 

So letting e(i , j )  = supxe, �9 A) < lal + we have: 

(*)a e(i , j )  < e < lal + ~ Axe ,  b~ '~''{''~) = bk ~''. 
Which of the properties required from (bx: A �9 a) are satisfied by (b~'J"(i'J): 

�9 a)? Note (/3), (7) hold by the inductive definition of b~ 3'' (and the choice of 

�9 ( i , j ) ) ,  as for property (a), one half, J<x[a] _C J<x[a] + b~ j''(i'j) hold by (*)2(a) 

(and b~ j = b~ ~'~ C_ b~J"(id)), so it is enough to prove (for A �9 a) :  

* Actually for any i < j < s clauses (/~), ('r), (6) hold. 
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( , ) ,  'j''(''j> �9 

For this end we define by induction on e < lal + functions fa  *,A,r with domain 

b~ j'~ for every a < A �9 a, such that ~ < e :0 f~,x,r C r *,x,~ _ j~ , so the domain 

increases with r 

We let f~,A,0 = f~,x I b~ j, f~'A'r = Ur f~,x,r for e < [al + limit, and 

f~,x,r is defined by defining each f~'~'~+1(0) as follows: 

CASE 1: If 0 �9 b~ 'J'~ then f2'A:(O). 

~i,j,~ 0 �9 h ~'j'~ and not Case 1 and # minimal under those CASE 2: If # �9 ~X , -~, 

conditions, then f~'~':(O) where we choose/3 = f~,x,~(#). 

CASE 3: If 0 �9 a n pcf(b~ j'*) and not Case 1 or 2, then 

Min {7 < O: f~'~'~ I bo[a] <_j<.[,] f~,o:}. 

Now �9 a>: < I 1+> can be computed from a and (b~J: A �9 
a). But the latter belong* to Nj+I, so the former belongs to Nj+I, so as also 

((f~'A: a < A): A E pcfa)  belongs to Nj+I we clearly get that 

belongs to Nj+I. Next we prove by induction on e that,  for A E a, we have: 

| �9 " r /0~ = sup(N,~ n 0). 0 E [~,3,~ & A E I I  ::~ #sup(N~n8)~ / 

For e = 0 this is by (*)2(6). For e limit, by the induction hypothesis and 
/ea,A,e+l [g}~ the definition of ,~r For e + 1, we check Jsup(N,,AA)~.l according to the case 

in its definition; for Case 1 use the induction hypothesis applied to sup(rr 

r~" 'e  Lastly, For Case 2 (with #), by the induction hypothesis applied to Jsup(N~n,)" 

for Case 3 (with O) we should note: 

(i) b~ '3'~ n be[a] ~ g<e[a] (by the case's assumption and (*)2(a) above), 

(ii) f.,x,~ . . . .  _ r s,p(g~nx) t (b~ 3'~ n b0 '~'r c J~,p(g~n0) (by the induction hypothesis for e, 

used concerning A and 0) hence (by the definition in case 3 and (i) + (ii)), 

(iii) ca,x,,+1 :n~_  Js,p(N~n~)w/ < sup(N,~ n 0). 

* As {b~ ~'' : A E a) : ela[ +) is eventually constant, also each member of the sequence 
belongs to N#+x. 



104 s. SHELAH Isr. J. Math. 

Now if 7 < sup(N~ t3 0) then for some 7(1), 7 < -~(1) �9 N~ N 0, so letting 

b =: b~ ~'* N ba[a] ;3 b~'~'*, it belongs to J<~[a] ". J<~[a], we have 

~e~ __ ~ea,O,e f.~,o [ b <j<,[~ #3'(1) I b < #supfNJ~O) 

ca,A,e+l (R3 hence ~.p(N.n~)x~ > 7; as this holds for every 7 < sup(N~N0) we have obtained 

(iv) ~~ ~0~_ ~ . . p ( N . ~ ) ~  / > sup(N~ N 0); 

together we have finished proving the inductive step for e + 1, hence we have 

proved | 

This is enough for proving ~'J'~ ~ �9 J<~[a]: Why? If it fails, as b~ j'~ �9 Nj+~ 

and (f~,~,e: a < A) belongs to Nj+I, there is g �9 l-I b~ j'" s.t. 

(.) a < A =~ f~"'~" ~ b i ' j :  < g mod J<~[a]. 

f"'~'* mod J<~[a]. But < (sup(N~ N 0): 0 �9 Wlog g �9 Ni+I; by (*), , ,p(N.~)  < g g 

b~" ) .  Together this contradicts @~! 

This ends the proof of 6.7. 16.7 

6.7A CLAIM: Assume lal < tr = cf(tc) < Min(a), a an infinite ordinal, la] + < to. 

Let f ,  N = (N~: i < t;), N~ be as in the proof of C. 7. Then we can find 

= (i~: ~ < ~), a = (.~: ~ < ~) and ((b~[a]: ~ e a~): ~ < ~) such that: 
(a) ~ is a strictly increasing continuous sequence of ordinals < to, 

(b) for Z < a we have (i~: a <_ Z) e Ni#+, (hence* (N/o: a _</3) 6 Ni~+~) and 

(c) a~ = Ni~ O pcf(a), so a~ is increasing continuous in/3, a C a~ c_ pef a, 

(d) b~[a] C_ a~ (for A e a~), 

(e) J<~[a~] = J<~[a~] + b~[a] (so A �9 b~[a] and b~[a] C A+), 

(f) if # < A are in a~ and # e b~[fi] then b~[a] C_ b~[a] (i.e. smoothness), 

(g) b~[a] = . ,  n pcf b~[a] 0.e. c~osean~), 
(h) i f  c C_ a~, fl < a, r �9 N~+, then for some finite 0 C a[3+l N pcf(c), we have 

c C_ U . e ,  b~+l[a]; more generally,** 

(h) + i f  c C_ a~, ~ < a, r �9 Ni.+,, 0 = cf(O) �9 Ni~+,, then for some 0 �9 

Nia+x, 0 C aB+ 1 N PCfo_complete(r ) we have c G Upet b~+1[ a] and 10l < o, 

* We can get ~ ~ (/~ + 1) E N~#+x if ~ succesor of regular and ~ a square later. 

** If in (h) +, 0 = Ro, we get (h). 
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b~[~] increases with [3. 

This will be proved below. 

6.7B CLAIM: In 6.7A we can also have: 

(1) i [ w e  let b~[a] = b~[.] = U s < o  b~[~], .o  = U~<o "8 then  a/so  for ~ = ~ we 

have (b) (use Nio+l ), (c), (d), (f), (i). 

(2) I ra  = cf(a) > laI then for j3 = a a/so (e), (g). 

(3) / f c f ( a )  > lal, c e Ni.,  c C_ a~ (hence Ir < Min(c) and c C_ ao), then 

for some finite ~ C_ (pcfr N ao we have c C_ U.e~ b.[g]. Similarly for 

P-complete, 0 < cf(a) (i.e. we have clauses (h), (h) + for 13 = or). 

(4) We can have continuity in 6 <_ a when cf(~f) > la[, i.e. b~ = U~<s b~. 

6.7C Remark: 

(1) If we want to use length ~, use N as produced in [Sh420, 2.6] so a = ~. 

(2) Concerning 6.7B, in 6.7C(1) for a club E of cr = ~, we have a 6 E =v 

b~ [a] = b~ [a] n .~. 
(3) We can also use 6.7 (6.7A, 6.7B) to give an alternative proof of part of the 

localization theorems similar to the one given in the Spring '89 lectures. 

For example: 

(3A) If la I < 0 = cf0 < Min(a), for no Ai E pcfa  (i < 8) a < 8, do we have 

A~<0[A~ > maxpcf{Ai: i < a I ] .  

(3B) if I.I < Min(a), Ibl < M i n b ,  b C_ pcf(a), A E pcf(a), then for some c c b we 

have Icl _< I"1 and A E pcf(c). 

Proof of (3A) from 6. 7C(3): Without loss of generality Min a > 8 +3, let r = 8 +2, 

let N, N~, fi, b (as a function), (i~: a _ a =: I,[ +) be as in 6.7A but also 

(Ai: i < 0) E No. So for j < 8, c i =: {Ai: i < j} e No (and c i C_ ao) hence 

(by clause (h) of 6.7A), for some finite i)j C_ "1 n pcf cj = Ni~ n pcf a n per cj we 

have cj C U~e~j bi[a]- Assume j(1)  < j(2)  < 8. Now if # �9 aN U~e~,(~)bI[g ] 

then for some Po �9 ~j(1) we have # �9 b~o[g]; now /~o �9 ~)j(1) C_ pcf(cj0)) C_ 

pcf(ci(2)) C_ pcf (U~edj(,)b[[g]) = Uxea,(2)pcf(b[[a]) hence (by clause (g) of 

6.7A as Po �9 ~)i(o) C N1) for some Pl �9 l)j(2), #o �9 b~ [g]. So by clause (f) 

- bl [~1. of 6.7A we have b~o[~ ] C_ b~ifi] so remembering # �9 b,o[a], we have # �9 

Remembering # was any member of ar~Uxe%(, ) b[ [a], we have aDU~e~i(~) b[ [~] _c 

a n U~eaj(2)b[[g] (holds without "an" but not Used). So (a cl U~e~, ~[[al: j < 0) 

is a non-decreasing sequence of subsets of a, but cf(O) > [hi, so the sequence is 
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eventually constant, say for j > j ( . ) .  But 

= max (maxpcf(bX[al)) 
AE~j 

= maxA _< maxpcf{Ai: i < j} < Aj 
AE~j 

(last equality as b~ [a] _C b~[a] mod J<~[al]). Contradiction. 16.7c 

Proof of 6.7C(3B) (like [Sh371, w Included for completeness. If this fails 

choose a counterexample (a,b,A) with ]hi minimal, and among those with 

maxpcf(b) minimal and among those with U{p+: p �9 A N pcf(b)} minimal. 

So maxpcf(b) = A, and p = sup[A N pcf(a)] is not in pcf(b) or # = A. Try 

to choose by induction on i < lal +, Ai �9 A n pcf(b), ,~i > maxpcf{s j < i}, 

by 6.7C(3A), we will be stuck at some i, and by the previous sentence (and 

choice of (a, b, A), i is limit, so pcf((Aj: j < i}) g A but it is C_ pcf(b) C_ A+, 

so A = maxpcf{,~j: j < i}. For each j ,  by the minimality condition for some 

bj C b, we have Ibjl _< la[, Aj �9 pcf(bj). So A �9 pcf{Aj: j < i} C_ pcf(Uj< i 5j) 

but Uj<i bj is a subset of b of cardinality < [i] x laI = la]. 

6. 7D Proof o[ 6. 7A: Let ((f~'~: a < A): A �9 pcfa) be chosen as in the proof of 6.7. 

For r < ~ we define a r =: Nr N pcfa; we also define r  as 

((f~r a < A): A �9 pcfa) where f~r �9 I-[a r is defined as follows: 

(a) if 0 �9 a,/~""x(0) =/~"'x(0), 

(b) if O �9 ar  and cf(a) ~t (lar Min a), then 

f~"c'x(0) = Min {'y </~: f~"'~ r b0[a] _<J<,[b,[,]] f.~,e r be[a]}, 

(c) if ~ e ar and cf(a) �9 (laCl, Min a), define f~"r so as to satisfy (*)1 in 

the proof of 6.7. 

Now r  is legitimate except that we have only 

r < Car mod J<x[a r ~ < ' 7  < A 6 p c f a = ~  j~ - - - r  
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(instead of strict inequality) and /~<~  V~<~ [f$r < f~r mod J<~[ar but 

this suffices. (The first statement is actually proved in [Sh371, 3.2A], the second 

in [Sh371, 3.2B]; by it also r  is cofinal in the required sense.) 

For every ~ < ~: we can apply 6.7 with (Nr ~pcf  a), r  and (Nr i < a) 

here standing for a, ] , / V  there. In the proof of 6.7 get a club Er of ~ (so any 

i < j from Er are O.K.). Now we can define for r < a and i < j in Er Cb~ ~ and 

(r e < [ar (er A): A �9 ar er as well as in the proof of 6.7. Let: 

E = {i < ~: i is a limit ordinal (Vj < i)(j+j < i & j x j  < i) and A i �9 Ej }. 
j< i  

So by [Sh420, w we can find C = (C~: ~ e S), S C {~ < ~: cf~f = c fa}  

stationary, C~ a club of $, otp C6 = w2a such that: 

(1) for each a < A, {C~ N a: a E nacc(Cs)} has cardinality < to,* and 

(2) for every club E '  of 0 for stationarily many ~ E S, C~ C_ E' .  

Without loss of generality C E No. For some ~f*, C6. C E, and let {jr ( _< w2a} 
enumerate C~. U {~*}. So (jr r _< w2a) is a strictly increasing continuous se- 

quence of ordinals from E _C ~ such that (j~: e < ~) E Njr Let j(~) = jr 

i(~) = ir =: j~2(1+r ar = Ni, n p c f a ,  and a =: (ar ~ < a), b~[~] =: 

i(~)bJ(w2r162162 Most of the requirements follow 

immediately, as 

(.) for each r < a, we have ar (b~[a]: A E ar are as in 6.7 and belong to 

Ni~+3 c_ NiB+ , 
We are left (for proving 6.7A) with proving (h) + and (i) (remember (h) is a 

special case of (h) + choosing 0 = R0). 

For proving clause (i) note that for ~ < ~ < ~, f~"r C_ f,LA hence r j c_C_ 

b~ j. Now we can prove by induction on e that r b~ j'~ C_ ~b~ j'~ for every A E ar 

(check the definition after (*)2 in the proof of 6.7) and the conclusion follows. 

Instead of proving (h) + we prove an apparently weaker version (by  below, 

and then note that ~' = (i~2r ~ < a), ~' = (a~2r i < a), (Ni(~2r ~ < a), 

(b~'r ( < a, A �9 a~ = a~2r will exemplify the conclusion** where 

(h)' if c C a~,/~ < a, r �9 N~+~, 0 = cf(0) �9 N~+~ then for some ~ �9 Ni~+~+~+~, 

D _ a/~+w n pCfo_complete({:) we have c ___ U~e~ b~+~[ 5] and I~l < 0. 

* If  ~ is successor of regular, then we can get ['y E C~ n C~ =~ C~  n 7 = C~ n 7] .  

** Assuming a > R0 hence, w2a = a for notational simplicity. 
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Proof of (h)': So let 19, f~, r be given; let (bz[a]: # �9 pcf r149  Ni~+~) be a 

generating sequence. We define by induction on n < w, An, (on, An: .  �9 An) such 

that: 
(a) 

(b) 
(c) 
(d) 
(e) 

(f) 

Ao = {0}, c0 = r A0 = maxpcf  c, 

An C_ ~,lAnl<O, 
i f .  �9 An+l t h e n .  I n �9 An, r C_ c.Fn, A. < Ant., and A~ = maxpcf(cv), 

A.~, (c o, An: .  �9 A.)  belongs to Ni~+z+,, hence A n �9 Ni~+z+,,, 
i f ,  �9 An and A n �9 pcf0_complete(Cn) and a + l + n -  cngbx. [a] then 

j3+lq-n - 
(Vv)[lJ E A n + l & ,  C_ u r v = ,^(0)] and cn-(o ) = cn\b~. [a] (so A.'(o) = 

maxpcf  %*(o) < A n = maxpcf  %). 

i f ,  �9 An and A. ~ pcfo_complet~(en) then 

,,, = U { b ~  ,,>[,]:i < in < o , . '< i>  �9 An+a}, 

and if u = .A (i) �9 An+l then c~ = b ~  [r 

(g) i f ,  e An. and A. �9 PCf0-comp~e.~(r but r C_ b~+'-n[a], then ~ ( 3 , ) [ , ~  �9 

An+l]. 
There is no problem to carry the definition (we use 6.7F(1) below*, the point is 

that c �9 Ni~+,+~ implies (bx[$]: A �9 pcfo[r �9 N/~+,+~ and as there is D as in 

6.7F(1), there is one in Ni~+~+~+~ so D _c a~+z+n+l). Now let 

f l+ l+n  -li 
On =: A,7:. �9 An and A. �9 O-completePCf (C.) and r C_ b:~. [ . j f  

and D =: Un<~ Dn; we shall show that it is as required. 

The main point is c c_C_ [Jxeo b~+~[a]; note that 

/~+l-t-n =I ~,Sd"w [~]] A. �9 D,.  �9 An ~ b~. [.j _C ~. 

hence it suffices to show e c_ U~<~Uxe~. bx~+X+n[a], so assume 0 E 

c\Un<w Uxed~ b~x+x+n[a], and we choose by induction on n, U- �9 An such that 

.0 = < > ,  "n+l r n = .n and 0 e r by clauses (e) + (f) above this is possible 

and (maxpcf en:  n < w) is strictly decreasing, contradiction. 

The minor point is [D[ < 0; if 0 > R0 note that A .  [An[ < 0 and 0 = cf(0) 

so Pl- - I  U,, A,,I < o + R 1  = 0. 

* No vicious circle; 6.7F(1) does not depend on 6.7B. 



VoL 95, 1996 FURTHER CARDINAL ARITHMETIC 109 

If 0 = Ro (i.e. clause (h)) we should have Un An finite; the proof is as above 

noting the clause (f) is vacuous now. So An [An] = 1 and V,~ A,~ = 0, so Un An 

is finite. Another minor point is ~ E Nio+~+, ; this holds as the construction is 

unique from (Nj: j < i~+~), (ij: j < ~ + w), ((a~(r (bE: A �9 ai(r r < ~ + w); 

no "outside" information is used so ((An, ((c~, A~): ~? �9 An)): n < ~) �9 Ni~+~+t, 

so (using a choice function) really 0 �9 Nio+~+ ~ . ~6.7A 

6.7E P r o o f o f C . 7 B :  Let b~[~] = b~ = Uz<o b~[a~] and ao = Ur ar Part (1) 

is straightforward. For part (2), for clause (g), for f~ = ~, the inclusion "C_" is 

straightforward; so assume # �9 a~ A pcf b~[~]. Then by 6.7A(c) for some f~0 < 13, 

we have p E a~o, and by 6.7C(3B) (which depends on 6.7A only) for some 31 </3, 

# �9 pcf b~ 1 [a]; by monotonicity wlog/30 = /31, by clause (g) of 6.7A applied to 

/30, # �9 b~~ Hence by clause (i) of 6.7A, # e b~[~], thus proving the other 

inclusion. 

The proof of clause (e) (for 6.7B(2)) is similar, and also 6.7B(3). For 

6.7(B)(4) for 5 < a, cf($) > lal redefine b~[5] as Uf~<~ b~+l[a] �9 16.7B 

6.7F 

(o) 
(1) 

(2) 

(3) 
(4) 

(5) 

CLAIM: Let  0 be regular. 

/ira < 0, Pef0_complete (Ui<a hi )  = Ui<c~ PCf0--complete(a'/)" 
I f  (b0[a]: 0 E pcfa)  is a generating sequence for a, c C_ a, then for some 

C pcf 0 . . . .  plete(C) we have: lot < 0 and c C_ Uoca bo[a]. 

I f  la U r < Mina, c C_ PCfo_complete(a), A �9 PCfo_complete(C ) then A e 

PCfo-compl~t~(a). 
In (2) we can weaken laUct < Mina to lal < Mina, lcl <Minc .  

We cannot find Am E PCf0_complete(a ) for ~ < ]al + such that A~ > 

suppcf0_r j < i)). 

A s s u m e  0 < ]al, c _ pcfe_complete a (and ]c I < Min c; o f  course lal < 

Mina). I r A  E PCf0_complete(C ) then for some i~ C c we have ll}l << lal and 

)~ E PCf0_complete(D ). 

Proof." (0) and (1): Check. 

(2) See [Sh345b, 1.10-1.12]. 

(3) Similarly. 

(4) If 0 = ~0 we already know it (e.g. 6.7C(3A)), so assume 0 > R0 and, without 

loss of generality, 0 is regular _< lal. We use 6.7A with {0, (A,: i < la]+)} E No, 

a = ]hi + ,  ~r -- ]hi +3 where, without loss of generality, ~ < Min(a). For each a < 

[a[ + by (h) + of 6.7.4 there is ~ �9 Nil ,  ~ C_ pcf0_complete({Ai: i < o~}), [~a{ < 0 
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such that  {Ai: i < a} C_ UoeD= bl[a]; hence, by clause (g) of 6.7A and 6.7F(0) 

we have al n Pcf0_r162 i < ~x}) C U0e~= b~[a]. So for a < B < lal +, 

~ c_ al n pcfo_complete{Ai: i < Or} C_ at N pcfo_complete{Ai: i < /~} C_ Uoe~a b0Z[a] �9 
As the sequence is smooth (i.e. clause (f) of 6.7A) clearly a </~ =~ UvED= hi[ ~] C_ 

U . ~  b~[~]. 
So ( U ~ o .  b~[~] n a: o~ < lal +) is a non-decreasing sequence of subsets of a 

of length [al +, hence for some a(*) < [al + we have: 

(*)1 ,~(*) _< ,~ < lal + ~ O,,~o, ~,~[a] n ~ = O,,~o,,(., b~[a] n a. 
If 7" �9 al  n PCfO_complete({Ai: i < el}) then 7" �9 PCfo_compi,t,(a ) (by 

6.7F(2),(3)), and 7" e b~.[a] for some # ,  �9 1)~ so bl[a] C bl [a], also 7" �9 

pcfs_compl~t,(b~[~] n a) (by clause (e) of 6.7A), hence 

1 - 

7" �9 pcfo_complete(br[a ] n a) c pcfe_complete(bl [a] n a) 

C PCf0_complete ( U  b~[a] n a) .  

[ _ \ 

So al N pcf0_~omplet~({A,: i < a}) C pcfs_r (U~,ed b~[a]Na).  But for 

each a < In[ + we have A~ > suppcf0_complete({Ai: i < a}), whereas ~ C_ 

pcf._complet~{Ai: i < a}, hence A~ > sup l)~ hence 

(*)2 A~ > sup~,eD= maxpcf  bl[a] _> sup PCfo_r ( U ~ e ~  bl[ a] n a ) .  

On the other hand, 

(*)3 Aa e pcf0_complete{Ai: i < (~ + 1} C_ PCf0_complete (U•E,=+, bit a] n . ) .  
For a = ct(.) we get contradiction by (*)1 + (*)2 + (*)3. 

(5) Assume a, r A form a counterexample with A minimal. Without  loss of 

generality lal +3 < Min(a) and A = maxpcf  a and A -- maxpcf r  (just let d =: 

hA[a], r =:  c n PCfo[a']; if A ~ PCfo_complete(C t) then necessarily A E pcf(r  
(by 6.7F(0)) and similarly c\c' C_ pcfo_competr ) hence by 6.7F(2),(3) A e 

PCf o-complete ( a \ ed ) , 
contradiction). 

Also without loss of generality A ~ c. Let ~;, #, N, (/~ = i(a): a < c),  

a = (ai: i < a) be as in 6.7A with a E No, r E No, A E No, r = ]aI +, s = lal § < 

Mina. We choose by induction on e < laI +, A~, ~), such that: 

(a) A, e a,.,,,+,.,+3, D= E N~(,,,,.+,.,+I), 
(b) A, �9 r 

(c) l~, C_ a~,,+~+l n pcfs_r162 ~ < e}), 
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(d) I~,1 < #, 
(e) {Ar ff < e} C_ Uee~, bo'2'+"+l[a], 

(f))~' ~ PCf0-complete (UoE0. b~"+w+l[al) �9 
For every e < lal + we first choose ~, as the <x-first element satisfying (c) 
+ (d) + (e) and then if possible ~, as the <x-first element satisfying (b) + 
(f). It is easy to check the requirements and in fact (~r r < e) �9 N~2,+1, 
(~r ff < e) �9 N~2~+1 (so clause (a) will hold). But why can we choose at 
all? Now )~ ~ pcf0_eom~iete{)~r r < e} as a, r A form a counterexample 
with ,~ minimal and e < lal + (by 6.7F(3)). As A = maxpcfa  necessarily 
pcfa_r162 ~ < e}) _C )~ hence ~ C_ ~ (by clause (c)). By part (0) of 
the claim (and clause (a)) we know: 

0 f. r LU ,., ] -- U 
laED, 

C_ U ( # + l l C _ ~  
#E0~ 

(note /~ ---- maxpcfb~[a]). So ~ ~ pcfo_complete (U~E,, b~2~+~'{-l[0"]) hence by 
part (0) of the claim cg [.J~,~d. b~2~+~+z[ ~] so A~ exists. Now 0~ exists by 6.7A 
clause (h) +. 

Now clearly <an  U.~, .  b~,~2~+~+1 - "[a]. e < lal+~ is non-decreasing (as in the 
earlier proof) hence eventually constant, say for e _> e(.) (where e(*) < lal+). 
But 

(c~) A~ C [-J.e0.+l b~2~+~+1[ ~] [clause (e) in the choice of A~, 0~], 

b~, [a] [by clause (f) of 6.7A and (a) alone], [a] c_ - 

(3') A~ �9 Pcf0_r [as A~ �9 r and a hypothesis], 
" [Lw2e+w+l r~,l~ ((~))~e �9 pcIo-completel.u),. L"J) [by (3') above and clause (e) of 6.7A], 

( e ) )~  r pcf(a \ b ~2~+~+1~ 

(() A~ �9 pcf0_r (aM U,e,.+. ~a '+wT i [ a ] )  [by (6) + (e) + (j3)]. 
But for e = e(*), the statement (() contradicts the choice of e(*) and clause (f) 
above. I6.7F 
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